Skip to main content

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Ensembles of Decision Trees

1. What are Ensembles?

  • Ensemble methods combine multiple machine learning models to create more powerful and robust models.
  • By aggregating the predictions of many models, ensembles typically achieve better generalization performance than any single model.
  • In the context of decision trees, ensembles combine multiple trees to overcome limitations of single trees such as overfitting and instability.

2. Why Ensemble Decision Trees?

Single decision trees:

  • Are easy to interpret but tend to overfit training data, leading to poor generalization,.
  • Can be unstable because small variations in data can change the structure of the tree significantly.

Ensemble methods exploit the idea that many weak learners (trees that individually overfit or only capture partial patterns) can be combined to form a strong learner by reducing variance and sometimes bias.


3. Two Main Types of Tree Ensembles

(a) Random Forests

  • Random forests are ensembles consisting of many decision trees.
  • Each tree is built on a bootstrap sample of the training data (sampling with replacement).
  • At each split in a tree, only a random subset of features is considered for splitting.
  • The aggregated prediction over all trees (majority vote for classification, average for regression) reduces overfitting by averaging diverse trees.

Key details:

  • Randomness ensures the trees differ; otherwise, correlated trees wouldn't reduce variance.
  • Trees grown are typically deeper than single decision trees because the random feature selection introduces diversity.
  • Random forests are powerful out-of-the-box models requiring minimal parameter tuning and usually do not require feature scaling.

(b) Gradient Boosted Decision Trees

  • Build trees sequentially, where each new tree tries to correct errors of the combined ensemble built so far.
  • Unlike random forests which average predictions, gradient boosting fits trees to the gradient of a loss function to gradually improve predictiveness.
  • This process often yields higher accuracy than random forests but training is more computationally intensive and sensitive to overfitting.

4. How Random Forests Inject Randomness

  • Data Sampling: Bootstrap sampling ensures each tree is trained on a different subset of data.
  • Feature Sampling: Each split considers only a subset of features randomly selected.

These two layers of randomness ensure:

  • Individual trees are less correlated.
  • Averaging predictions reduces variance and prevents overfitting seen in single deep trees.

5. Strengths of Ensembles of Trees

  • Robustness and accuracy: Reduced overfitting due to averaging or boosting.
  • Minimal assumptions: Like single trees, ensembles typically do not require feature scaling or extensive preprocessing.
  • Handle large feature spaces and data: Random forests can parallelize tree building and scale well.
  • Feature importance: Ensembles can provide measures of feature importance from aggregated trees.

6. Weaknesses and Considerations

  • Interpretability: Ensembles lose the straightforward interpretability of single trees. Hundreds of trees are hard to visualize and explain.
  • Computational cost: Training a large number of trees, especially with gradient boosting, can be time-consuming.
  • Parameter tuning: Gradient boosting requires careful tuning (learning rate, tree depth, number of trees) to avoid overfitting.

7. Summary Table for Random Forests and Gradient Boosting

        Feature

            Random       Forests

Gradient Boosted Trees

Tree construction

Parallel, independent bootstrap samples

Sequential, residual fitting

Randomness

Data + feature sampling

Deterministic, based on gradients

Overfitting control

Averaging many decorrelated trees

Regularization, early stopping, shrinkage

Interpretability

Lower than single trees but feature importance available

Lower; complex, but feature importance measurable

Computation

Parallelizable; faster

Slower; sequential

Typical use cases

General-purpose, robust models

Performance-critical tasks, often winning in competitions


8. Additional Notes

  • Both methods build on the decision tree structure explained in detail,.
  • Random forests are often preferred as a baseline for structured data due to simplicity and effectiveness.
  • Gradient boosted trees can outperform random forests when carefully tuned but are less forgiving.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Kernelized Support Vector Machines

1. Introduction to SVMs Support Vector Machines (SVMs) are supervised learning algorithms primarily used for classification (and regression with SVR). They aim to find the optimal separating hyperplane that maximizes the margin between classes for linearly separable data. Basic (linear) SVMs operate in the original feature space, producing linear decision boundaries. 2. Limitations of Linear SVMs Linear SVMs have limited flexibility as their decision boundaries are hyperplanes. Many real-world problems require more complex, non-linear decision boundaries that linear SVM cannot provide. 3. Kernel Trick: Overcoming Non-linearity To allow non-linear decision boundaries, SVMs exploit the kernel trick . The kernel trick implicitly maps input data into a higher-dimensional feature space where linear separation might be possible, without explicitly performing the costly mapping . How the Kernel Trick Works: Instead of computing ...

Supervised Learning

What is Supervised Learning? ·     Definition: Supervised learning involves training a model on a labeled dataset, where the input data (features) are paired with the correct output (labels). The model learns to map inputs to outputs and can predict labels for unseen input data. ·     Goal: To learn a function that generalizes well from training data to accurately predict labels for new data. ·          Types: ·          Classification: Predicting categorical labels (e.g., classifying iris flowers into species). ·          Regression: Predicting continuous values (e.g., predicting house prices). Key Concepts: ·     Generalization: The ability of a model to perform well on previously unseen data, not just the training data. ·         Overfitting and Underfitting: ·    ...