Skip to main content

Linear Models

1. What are Linear Models?

Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios.


2. Mathematical Formulation

For regression, the general form of a linear model's prediction is:

y^=w0x0+w1x1++wpxp+b

where;

  • y^ is the predicted output,
  • xi is the i-th input feature,
  • wi is the learned weight coefficient for feature xi,
  • b is the intercept (bias term),
  • p is the number of features.

In vector form:

y^=wTx+b

where w=(w0,w1,...,wp) and x=(x0,x1,...,xp).


3. Interpretation and Intuition

  • The prediction is a linear combination of features — each feature contributes proportionally to its weight.
  • The model captures linear relationships between features and targets.
  • Despite simplicity, when data has a large number of features, linear models can approximate complex functions (even perfectly fit training data if number of features ≥ number of samples).

4. Linear Models for Regression

Ordinary Least Squares (OLS) / Linear Regression

·         The classic linear regression model estimates w and b by minimizing the sum of squared differences between observed and predicted values.

·         Objective: Minimize the residual sum of squares minw,bi=1N(yiy^i)2 where yi are true outputs and y^i are predicted outputs.

·         This results in a convex optimization problem with a closed-form solution using linear algebra.


5. Linear Models for Classification

  • Linear models are also extensively used for classification tasks.
  • For example, Logistic Regression models the probability of a class as a logistic function applied to the linear combination of features.
  • Similarly, Linear Support Vector Machines (SVMs) seek a separating hyperplane defined by a linear function.

6. When Do Linear Models Perform Well?

  • Particularly effective when the number of features is large relative to the number of samples, as they can fit complex combinations of features.
  • Efficient to train on very large datasets where training more complex models is computationally prohibitive.
  • Often serve as baseline models or components in more complex pipelines.

7. Limitations and Failure Cases

  • In low-dimensional spaces or when the true decision boundary is non-linear, linear models may underperform.
  • They can't naturally handle complex, non-linear relationships unless combined with feature transformations or kernel methods (e.g., kernelized SVMs).
  • Feature scaling and careful regularization are necessary to avoid overfitting or underfitting.

8. Key Variants

  • Ordinary Least Squares (OLS): Minimizes squared error, no regularization.
  • Ridge Regression: Adds L2 regularization to penalize large weights.
  • Lasso Regression: Adds L1 regularization for feature selection/sparsity.
  • Elastic Net: Combines L1 and L2 penalties.
  • Variants apply different techniques for parameter estimation and complexity control.

9. Summary

  • Linear models predict through a weighted sum of features.
  • They are computationally efficient and interpretable.
  • Perform well with many features or large datasets.
  • May be outperformed in non-linear or low-dimensional contexts.
  • Integral to classical and modern machine learning workflows.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Kernelized Support Vector Machines

1. Introduction to SVMs Support Vector Machines (SVMs) are supervised learning algorithms primarily used for classification (and regression with SVR). They aim to find the optimal separating hyperplane that maximizes the margin between classes for linearly separable data. Basic (linear) SVMs operate in the original feature space, producing linear decision boundaries. 2. Limitations of Linear SVMs Linear SVMs have limited flexibility as their decision boundaries are hyperplanes. Many real-world problems require more complex, non-linear decision boundaries that linear SVM cannot provide. 3. Kernel Trick: Overcoming Non-linearity To allow non-linear decision boundaries, SVMs exploit the kernel trick . The kernel trick implicitly maps input data into a higher-dimensional feature space where linear separation might be possible, without explicitly performing the costly mapping . How the Kernel Trick Works: Instead of computing ...

Supervised Learning

What is Supervised Learning? ·     Definition: Supervised learning involves training a model on a labeled dataset, where the input data (features) are paired with the correct output (labels). The model learns to map inputs to outputs and can predict labels for unseen input data. ·     Goal: To learn a function that generalizes well from training data to accurately predict labels for new data. ·          Types: ·          Classification: Predicting categorical labels (e.g., classifying iris flowers into species). ·          Regression: Predicting continuous values (e.g., predicting house prices). Key Concepts: ·     Generalization: The ability of a model to perform well on previously unseen data, not just the training data. ·         Overfitting and Underfitting: ·    ...