Skip to main content

Generalization, Overfitting and Underfitting

Generalization

Definition:

  • Generalization refers to a machine learning model's ability to perform well on new, unseen data that is drawn from the same distribution as the training data.
  • The core goal of supervised learning is to learn a model that generalizes from the training set to accurately predict outcomes for new data points.

Importance:

  • A model that generalizes well captures the underlying patterns in the data instead of memorizing training examples.
  • Without good generalization, a model may perform well on the training data but poorly on any new data, which is undesirable in real-world applications.

Overfitting

Definition:

  • Overfitting occurs when a model learns the noise and random fluctuations in the training data instead of the true underlying distribution.
  • The model fits the training data too closely, capturing minor details that do not generalize.

Characteristics:

  • Very low error on the training set.
  • Poor performance on new or test data.
  • Decision boundaries or predictions are overly complex and finely tuned to training points, including outliers.

Causes of Overfitting:

  • Model complexity is too high relative to the amount and noisiness of data.
  • Insufficient training data to support a complex model.
  • Lack of proper regularization or early stopping strategies.

Illustrative Example:

  • Decision trees with pure leaves classify every training example correctly, which corresponds to overfitting by fitting to noise and outliers (Figure 2-26 on page 88).
  • k-Nearest Neighbor with k=1 achieves perfect training accuracy but often poorly generalizes to new data.

Underfitting

Definition:

  • Underfitting occurs when a model is too simple to capture the underlying structure and patterns in the data.
  • The model performs poorly on both the training data and new data.

Characteristics:

  • High error on training data.
  • High error on test data.
  • Model predictions are overly simplified, missing important relationships.

Causes of Underfitting:

  • Model complexity is too low.
  • Insufficient features or lack of expressive power.
  • Too strong regularization preventing learning of meaningful patterns.

The Trade-Off Between Overfitting and Underfitting

Model Complexity vs. Dataset Size:

  • There is a balance or "sweet spot" to be found where the model is complex enough to explain the data but simple enough to avoid fitting noise.
  • The relationship between model complexity and performance typically forms a U-shaped curve.

Model Selection:

  • Effective supervised learning requires choosing a model with the right level of complexity.
  • Techniques include hyperparameter tuning (e.g., k in k-nearest neighbors), pruning in decision trees, regularization, and early stopping.

Impact of Scale and Feature Engineering:

  • Proper scaling and representation of input features significantly affect the model's ability to generalize and reduce overfitting or underfitting.

Strategies to Mitigate Overfitting and Underfitting

·         Mitigating Overfitting:

·         Use simpler models.

·         Apply regularization (L1/L2).

·         Early stopping in iterative algorithms.

·         Prune decision trees (post-pruning or pre-pruning).

·         Increase training data size.

·         Mitigating Underfitting:

·         Use more complex models.

·         Add more features or use feature engineering.

·         Reduce regularization.


Summary

Aspect

Overfitting

Underfitting

Model Complexity

Too high

Too low

Training Performance

Very good

Poor

Test Performance

Poor

Poor

Cause

Learning noise; focusing on outliers and noise

Oversimplification; lack of feature learning

Example

Deep decision trees, k-NN with k=1

Linear model on a nonlinear problem

The ultimate goal is to find a model that generalizes well by balancing these extremes.

 

Comments

Popular posts from this blog

Cone Waves

  Cone waves are a unique EEG pattern characterized by distinctive waveforms that resemble the shape of a cone.  1.      Description : o    Cone waves are EEG patterns that appear as sharp, triangular waveforms resembling the shape of a cone. o   These waveforms typically have an upward and a downward phase, with the upward phase often slightly longer in duration than the downward phase. 2.    Appearance : o On EEG recordings, cone waves are identified by their distinct morphology, with a sharp onset and offset, creating a cone-like appearance. o   The waveforms may exhibit minor asymmetries in amplitude or duration between the upward and downward phases. 3.    Timing : o   Cone waves typically occur as transient events within the EEG recording, lasting for a few seconds. o They may appear sporadically or in clusters, with varying intervals between occurrences. 4.    Clinical Signifi...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

Principle Properties of Research

The principle properties of research encompass key characteristics and fundamental aspects that define the nature, scope, and conduct of research activities. These properties serve as foundational principles that guide researchers in designing, conducting, and interpreting research studies. Here are some principle properties of research: 1.      Systematic Approach: Research is characterized by a systematic and organized approach to inquiry, involving structured steps, procedures, and methodologies. A systematic approach ensures that research activities are conducted in a logical and methodical manner, leading to reliable and valid results. 2.      Rigorous Methodology: Research is based on rigorous methodologies and techniques that adhere to established standards of scientific inquiry. Researchers employ systematic methods for data collection, analysis, and interpretation to ensure the validity and reliability of research findings. 3. ...

Bipolar Montage Description of a Focal Discharge

In a bipolar montage depiction of a focal discharge in EEG recordings, specific electrode pairings are used to capture and visualize the electrical activity associated with a focal abnormality in the brain. Here is an overview of a bipolar montage depiction of a focal discharge: 1.      Definition : o In a bipolar montage, each channel is created by pairing two adjacent electrodes on the scalp to record the electrical potential difference between them. o This configuration allows for the detection of localized electrical activity between specific electrode pairs. 2.    Focal Discharge : o A focal discharge refers to a localized abnormal electrical activity in the brain, often indicative of a focal seizure or epileptic focus. o The focal discharge may manifest as a distinct pattern of abnormal electrical signals at specific electrode locations on the scalp. 3.    Electrode Pairings : o In a bipolar montage depicting a focal discharge, specific elec...

Primary Motor Cortex (M1)

The Primary Motor Cortex (M1) is a key region of the brain involved in the planning, control, and execution of voluntary movements. Here is an overview of the Primary Motor Cortex (M1) and its significance in motor function and neural control: 1.       Location : o   The Primary Motor Cortex (M1) is located in the precentral gyrus of the frontal lobe of the brain, anterior to the central sulcus. o   M1 is situated just in front of the Primary Somatosensory Cortex (S1), which is responsible for processing sensory information from the body. 2.      Function : o   M1 plays a crucial role in the initiation and coordination of voluntary movements by sending signals to the spinal cord and peripheral muscles. o    Neurons in the Primary Motor Cortex are responsible for encoding the direction, force, and timing of movements, translating motor plans into specific muscle actions. 3.      Motor Homunculus : o...