Skip to main content

Generalization, Overfitting and Underfitting

Generalization

Definition:

  • Generalization refers to a machine learning model's ability to perform well on new, unseen data that is drawn from the same distribution as the training data.
  • The core goal of supervised learning is to learn a model that generalizes from the training set to accurately predict outcomes for new data points.

Importance:

  • A model that generalizes well captures the underlying patterns in the data instead of memorizing training examples.
  • Without good generalization, a model may perform well on the training data but poorly on any new data, which is undesirable in real-world applications.

Overfitting

Definition:

  • Overfitting occurs when a model learns the noise and random fluctuations in the training data instead of the true underlying distribution.
  • The model fits the training data too closely, capturing minor details that do not generalize.

Characteristics:

  • Very low error on the training set.
  • Poor performance on new or test data.
  • Decision boundaries or predictions are overly complex and finely tuned to training points, including outliers.

Causes of Overfitting:

  • Model complexity is too high relative to the amount and noisiness of data.
  • Insufficient training data to support a complex model.
  • Lack of proper regularization or early stopping strategies.

Illustrative Example:

  • Decision trees with pure leaves classify every training example correctly, which corresponds to overfitting by fitting to noise and outliers (Figure 2-26 on page 88).
  • k-Nearest Neighbor with k=1 achieves perfect training accuracy but often poorly generalizes to new data.

Underfitting

Definition:

  • Underfitting occurs when a model is too simple to capture the underlying structure and patterns in the data.
  • The model performs poorly on both the training data and new data.

Characteristics:

  • High error on training data.
  • High error on test data.
  • Model predictions are overly simplified, missing important relationships.

Causes of Underfitting:

  • Model complexity is too low.
  • Insufficient features or lack of expressive power.
  • Too strong regularization preventing learning of meaningful patterns.

The Trade-Off Between Overfitting and Underfitting

Model Complexity vs. Dataset Size:

  • There is a balance or "sweet spot" to be found where the model is complex enough to explain the data but simple enough to avoid fitting noise.
  • The relationship between model complexity and performance typically forms a U-shaped curve.

Model Selection:

  • Effective supervised learning requires choosing a model with the right level of complexity.
  • Techniques include hyperparameter tuning (e.g., k in k-nearest neighbors), pruning in decision trees, regularization, and early stopping.

Impact of Scale and Feature Engineering:

  • Proper scaling and representation of input features significantly affect the model's ability to generalize and reduce overfitting or underfitting.

Strategies to Mitigate Overfitting and Underfitting

·         Mitigating Overfitting:

·         Use simpler models.

·         Apply regularization (L1/L2).

·         Early stopping in iterative algorithms.

·         Prune decision trees (post-pruning or pre-pruning).

·         Increase training data size.

·         Mitigating Underfitting:

·         Use more complex models.

·         Add more features or use feature engineering.

·         Reduce regularization.


Summary

Aspect

Overfitting

Underfitting

Model Complexity

Too high

Too low

Training Performance

Very good

Poor

Test Performance

Poor

Poor

Cause

Learning noise; focusing on outliers and noise

Oversimplification; lack of feature learning

Example

Deep decision trees, k-NN with k=1

Linear model on a nonlinear problem

The ultimate goal is to find a model that generalizes well by balancing these extremes.

 

Comments

Popular posts from this blog

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

How does the 0D closed-loop model of the whole cardiovascular system contribute to the overall accuracy of the simulation?

  The 0D closed-loop model of the whole cardiovascular system plays a crucial role in enhancing the overall accuracy of simulations in the context of biventricular electromechanics. Here are some key ways in which the 0D closed-loop model contributes to the accuracy of the simulation:   1. Comprehensive Representation: The 0D closed-loop model provides a comprehensive representation of the entire cardiovascular system, including systemic circulation, arterial and venous compartments, and interactions between the heart and the vasculature. By capturing the dynamics of blood flow, pressure-volume relationships, and vascular resistances, the model offers a holistic view of circulatory physiology.   2. Integration of Hemodynamics: By integrating hemodynamic considerations into the simulation, the 0D closed-loop model allows for a more realistic representation of the interactions between cardiac mechanics and circulatory dynamics. This integration enables the simulation ...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...

Prerequisite Knowledge for a Quantitative Analysis

To conduct a quantitative analysis in biomechanics, researchers and practitioners require a solid foundation in various key areas. Here are some prerequisite knowledge areas essential for performing quantitative analysis in biomechanics: 1.     Anatomy and Physiology : o     Understanding the structure and function of the human body, including bones, muscles, joints, and organs, is crucial for biomechanical analysis. o     Knowledge of anatomical terminology, muscle actions, joint movements, and physiological processes provides the basis for analyzing human movement. 2.     Physics : o     Knowledge of classical mechanics, including concepts of force, motion, energy, and momentum, is fundamental for understanding the principles underlying biomechanical analysis. o     Understanding Newton's laws of motion, principles of equilibrium, and concepts of work, energy, and power is essential for quantifyi...