Skip to main content

Generalization, Overfitting and Underfitting

Generalization

Definition:

  • Generalization refers to a machine learning model's ability to perform well on new, unseen data that is drawn from the same distribution as the training data.
  • The core goal of supervised learning is to learn a model that generalizes from the training set to accurately predict outcomes for new data points.

Importance:

  • A model that generalizes well captures the underlying patterns in the data instead of memorizing training examples.
  • Without good generalization, a model may perform well on the training data but poorly on any new data, which is undesirable in real-world applications.

Overfitting

Definition:

  • Overfitting occurs when a model learns the noise and random fluctuations in the training data instead of the true underlying distribution.
  • The model fits the training data too closely, capturing minor details that do not generalize.

Characteristics:

  • Very low error on the training set.
  • Poor performance on new or test data.
  • Decision boundaries or predictions are overly complex and finely tuned to training points, including outliers.

Causes of Overfitting:

  • Model complexity is too high relative to the amount and noisiness of data.
  • Insufficient training data to support a complex model.
  • Lack of proper regularization or early stopping strategies.

Illustrative Example:

  • Decision trees with pure leaves classify every training example correctly, which corresponds to overfitting by fitting to noise and outliers (Figure 2-26 on page 88).
  • k-Nearest Neighbor with k=1 achieves perfect training accuracy but often poorly generalizes to new data.

Underfitting

Definition:

  • Underfitting occurs when a model is too simple to capture the underlying structure and patterns in the data.
  • The model performs poorly on both the training data and new data.

Characteristics:

  • High error on training data.
  • High error on test data.
  • Model predictions are overly simplified, missing important relationships.

Causes of Underfitting:

  • Model complexity is too low.
  • Insufficient features or lack of expressive power.
  • Too strong regularization preventing learning of meaningful patterns.

The Trade-Off Between Overfitting and Underfitting

Model Complexity vs. Dataset Size:

  • There is a balance or "sweet spot" to be found where the model is complex enough to explain the data but simple enough to avoid fitting noise.
  • The relationship between model complexity and performance typically forms a U-shaped curve.

Model Selection:

  • Effective supervised learning requires choosing a model with the right level of complexity.
  • Techniques include hyperparameter tuning (e.g., k in k-nearest neighbors), pruning in decision trees, regularization, and early stopping.

Impact of Scale and Feature Engineering:

  • Proper scaling and representation of input features significantly affect the model's ability to generalize and reduce overfitting or underfitting.

Strategies to Mitigate Overfitting and Underfitting

·         Mitigating Overfitting:

·         Use simpler models.

·         Apply regularization (L1/L2).

·         Early stopping in iterative algorithms.

·         Prune decision trees (post-pruning or pre-pruning).

·         Increase training data size.

·         Mitigating Underfitting:

·         Use more complex models.

·         Add more features or use feature engineering.

·         Reduce regularization.


Summary

Aspect

Overfitting

Underfitting

Model Complexity

Too high

Too low

Training Performance

Very good

Poor

Test Performance

Poor

Poor

Cause

Learning noise; focusing on outliers and noise

Oversimplification; lack of feature learning

Example

Deep decision trees, k-NN with k=1

Linear model on a nonlinear problem

The ultimate goal is to find a model that generalizes well by balancing these extremes.

 

Comments

Popular posts from this blog

Research Process

The research process is a systematic and organized series of steps that researchers follow to investigate a research problem, gather relevant data, analyze information, draw conclusions, and communicate findings. The research process typically involves the following key stages: Identifying the Research Problem : The first step in the research process is to identify a clear and specific research problem or question that the study aims to address. Researchers define the scope, objectives, and significance of the research problem to guide the subsequent stages of the research process. Reviewing Existing Literature : Researchers conduct a comprehensive review of existing literature, studies, and theories related to the research topic to build a theoretical framework and understand the current state of knowledge in the field. Literature review helps researchers identify gaps, trends, controversies, and research oppo...

Mglearn

mglearn is a utility Python library created specifically as a companion. It is designed to simplify the coding experience by providing helper functions for plotting, data loading, and illustrating machine learning concepts. Purpose and Role of mglearn: ·          Illustrative Utility Library: mglearn includes functions that help visualize machine learning algorithms, datasets, and decision boundaries, which are especially useful for educational purposes and building intuition about how algorithms work. ·          Clean Code Examples: By using mglearn, the authors avoid cluttering the book’s example code with repetitive plotting or data preparation details, enabling readers to focus on core concepts without getting bogged down in boilerplate code. ·          Pre-packaged Example Datasets: It provides easy access to interesting datasets used throughout the book f...

Distinguishing Features of Vertex Sharp Transients

Vertex Sharp Transients (VSTs) have several distinguishing features that help differentiate them from other EEG patterns.  1.       Waveform Morphology : §   Triphasic Structure : VSTs typically exhibit a triphasic waveform, consisting of two small positive waves surrounding a larger negative sharp wave. This triphasic pattern is a hallmark of VSTs and is crucial for their identification. §   Diphasic and Monophasic Variants : While triphasic is the most common form, VSTs can also appear as diphasic (two phases) or even monophasic (one phase) waveforms, though these are less typical. 2.      Phase Reversal : §   VSTs demonstrate a phase reversal at the vertex (Cz electrode) and may show phase reversals at adjacent electrodes (C3 and C4). This characteristic helps confirm their midline origin and distinguishes them from other EEG patterns. 3.      Location : §   VSTs are primarily recorded from midl...

Distinguishing Features of K Complexes

  K complexes are specific waveforms observed in electroencephalograms (EEGs) during sleep, particularly in stages 2 and 3 of non-REM sleep. Here are the distinguishing features of K complexes: 1.       Morphology : o     K complexes are characterized by a sharp negative deflection followed by a slower positive wave. This biphasic pattern is a key feature that differentiates K complexes from other EEG waveforms, such as vertex sharp transients (VSTs). 2.      Duration : o     K complexes typically have a longer duration compared to other transient waveforms. They can last for several hundred milliseconds, which helps in distinguishing them from shorter waveforms like VSTs. 3.      Amplitude : o     The amplitude of K complexes is often similar to that of the higher amplitude slow waves present in the background EEG. However, K complexes can stand out due to their ...

Maximum Stimulator Output (MSO)

Maximum Stimulator Output (MSO) refers to the highest intensity level that a transcranial magnetic stimulation (TMS) device can deliver. MSO is an important parameter in TMS procedures as it determines the maximum strength of the magnetic field generated by the TMS coil. Here is an overview of MSO in the context of TMS: 1.   Definition : o   MSO is typically expressed as a percentage of the maximum output capacity of the TMS device. For example, if a TMS device has an MSO of 100%, it means that it is operating at its maximum output level. 2.    Significance : o    Safety : Setting the stimulation intensity below the MSO ensures that the TMS procedure remains within safe limits to prevent adverse effects or discomfort to the individual undergoing the stimulation. o Standardization : Establishing the MSO allows researchers and clinicians to control and report the intensity of TMS stimulation consistently across studies and clinical applications. o   Indi...