Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Predicting Probabilities

1. What is Predicting Probabilities?

  • The predict_proba method estimates the probability that a given input belongs to each class.
  • It returns values in the range [0, 1], representing the model's confidence as probabilities.
  • The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution).

2. Output Shape of predict_proba

  • For binary classification, the shape of the output is (n_samples, 2):
  • Column 0: Probability of the sample belonging to the negative class.
  • Column 1: Probability of the sample belonging to the positive class.
  • For multiclass classification, the shape is (n_samples, n_classes), with each column corresponding to the probability of the sample belonging to that class.

3. Interpretation of predict_proba Output

  • The probability reflects how confidently the model believes a data point belongs to each class.
  • For example, in binary classification:

Input Sample

Predicted Probability (Negative Class)

Predicted Probability (Positive Class)

1

0.2

0.8

2

0.9

0.1

  • The model predicts positive class if the positive class probability is greater than a threshold (default 0.5).

4. Relation to Thresholding and Classification

  • The default threshold for making classification decisions is 0.5:
  • If predict_proba for positive class > 0.5, sample is classified as positive.
  • Otherwise, it is classified as negative.
  • You can adjust this threshold depending on the problem, which affects false positive and false negative rates.
  • Adjusting thresholds can optimize metrics like precision, recall, F-score, especially on imbalanced datasets.

5. Calibration of Probability Estimates

  • Not all models produce well-calibrated probabilities.
  • A calibrated model outputs probabilities that closely match true likelihoods.
  • Example of a poor calibration: a decision tree grown to full depth might assign probability 1 or 0, but be often wrong.
  • Calibration can be improved using methods like:
  • Platt scaling
  • Isotonic regression
  • Reference: Paper by Niculescu-Mizil and Caruana, “Predicting Good Probabilities with Supervised Learning”.

6. Examples Using predict_proba (from the book)

  • Using a GradientBoostingClassifier on toy datasets:
# Suppose gbrt is a trained GradientBoostingClassifier
print("Shape of probabilities:", gbrt.predict_proba(X_test).shape)
# Output:
# Shape of probabilities: (n_samples, 2)
 
print("Predicted probabilities:\n", gbrt.predict_proba(X_test[:6]))
  • Output shows actual predicted probabilities for each class:
[[0.1 0.9]
[0.8 0.2]
[0.7 0.3]
...
]
  • The first column corresponds to the first class probability, the second column to the second class.

7. Advantages of predict_proba

  • Provides interpretable uncertainty estimates in terms of probabilities.
  • Useful for decision making where probabilistic thresholds are preferable to hard decisions.
  • Can be integrated into pipelines that weigh risks (e.g., medical diagnosis, fraud detection).
  • Helps in ranking samples by probability to prioritize further analysis.

8. Relationship Between predict_proba and decision_function

  • Some classifiers implement both decision_function and predict_proba:
  • decision_function returns raw scores or margins.
  • predict_proba converts these scores to probabilities.
  • Probabilities are usually obtained by applying a logistic function or softmax on the decision function scores.
  • Calibrated models provide better probability estimates compared to raw scores alone,.

9. Practical Considerations

  • When probabilities are needed (e.g., for risk assessment), prefer models supporting predict_proba.
  • Be cautious that probabilities are only as good as model calibration.
  • Always validate probabilities with calibration plots or metrics like Brier score.

10. Summary Table

Aspect

Details

Purpose

Provides class membership probabilities

Output Shape

Binary: (n_samples, 2), Multiclass: (n_samples, n_classes)

Values

Probabilities between 0 and 1, sum to 1 per sample

Default threshold

0.5 for binary classification

Calibration

Models may need calibration for accurate probabilities

Applications

Threshold tuning, risk assessment, ranking predictions

Relation

Derived from decision_function scores via logistic or softmax

Example Models

GradientBoostingClassifier, Logistic Regression, Random Forest

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

EEG Amplification

EEG amplification, also known as gain or sensitivity, plays a crucial role in EEG recordings by determining the magnitude of electrical signals detected by the electrodes placed on the scalp. Here is a detailed explanation of EEG amplification: 1. Amplification Settings : EEG machines allow for adjustment of the amplification settings, typically measured in microvolts per millimeter (μV/mm). Common sensitivity settings range from 5 to 10 μV/mm, but a wider range of settings may be used depending on the specific requirements of the EEG recording. 2. High-Amplitude Activity : When high-amplitude signals are present in the EEG, such as during epileptiform discharges or artifacts, it may be necessary to compress the vertical display to visualize the full range of each channel within the available space. This compression helps prevent saturation of the signal and ensures that all amplitude levels are visible. 3. Vertical Compression : Increasing the sensitivity value (e.g., from 10 μV/mm to...

What is Quantitative growth of the human brain?

Quantitative growth of the human brain involves the detailed measurement and analysis of various physical and biochemical parameters to understand the developmental changes that occur in the brain over time. Researchers quantify aspects such as brain weight, DNA content, cholesterol levels, water content, and other relevant factors in different regions of the brain at various stages of development, from prenatal to postnatal years.      By quantitatively assessing these parameters, researchers can track the growth trajectories of the human brain, identify critical periods of rapid growth (such as growth spurts), and compare these patterns across different age groups and brain regions. This quantitative approach provides valuable insights into the structural and biochemical changes that underlie brain development, allowing for a better understanding of normal developmental processes and potential deviations from typical growth patterns.      Furthermore,...

Distinguishing Features of Needle Spikes

The distinguishing features of needle spikes are critical for differentiating them from other EEG patterns, particularly interictal epileptiform discharges (IEDs).  1. Morphology Sharpness : Needle spikes are characterized by their sharp, pointed appearance, which gives them a "needle-like" waveform. This sharpness is a key feature that differentiates them from other spike types. Duration : Needle spikes are typically brief, with a duration that is shorter than that of IEDs. They usually last only a few milliseconds. 2. Amplitude Low Amplitude : Needle spikes generally have a low amplitude, often ranging between 50 and 250 μV. In some cases, they may not exceed the amplitude of the surrounding background activity, making them less prominent. 3. Location Occipital Region : Needle spikes are most commonly observed in the occipital region of the brain, although they can also appear in th...