Skip to main content

Classification and Logistic Regression

1. Classification Problem

  • Definition: Classification is a supervised learning task where the output variable y is discrete-valued rather than continuous.
  • In particular, consider binary classification where y {0,1} (e.g., spam detection: spam =1, not spam =0).
  • Each training example is a pair (x(i), y(i)), where x(i)Rd is a feature vector, and y(i) is the label.

2. Why Not Use Linear Regression for Classification?

  • Linear regression tries to predict continuous values, which is problematic for classification as the prediction can be outside [0,1].
  • For example, predicting y1.5 or −0.2 is meaningless when y is binary.
  • Instead, we want the output (x) to be interpreted as the probability that y=1 given x.

3. Logistic Regression Model

Hypothesis:

(x)=g(θTx)=1+e−θTx1,

where:

  • g(z)=1+e−z1 is the sigmoid function, which maps any real value to the interval (0, 1).
  • θRd+1 are parameters (including intercept term).
  • (x) can be interpreted as the estimated probability P(y=1x;θ).

Decision Boundary:

  • Predict y=1 if (x)0.5; otherwise, predict y=0.
  • The decision boundary corresponds to θTx=0, which is a linear boundary in input space.

4. Loss Function and Cost Function

Probability Model:

  • Logistic regression models conditional probability directly:

P(y=1x;θ)=(x),P(y=0x;θ)=1(x).

  • Equivalently, likelihood for data point (x(i),y(i)):

p(y(i)x(i);θ)=((x(i)))y(i)(1(x(i)))1y(i).

Cost (Loss) Function:

  • Use negative log-likelihood (cross-entropy loss) as cost per example:

J(i)(θ)=[y(i)log(x(i))+(1y(i))log(1(x(i)))].

  • Overall cost function (average over n examples):

J(θ)=n1i=1nJ(i)(θ).

  • This loss is convex in θ, enabling efficient optimization.

5. Training Logistic Regression

·         Use methods such as gradient descent or more advanced optimization (Newton's method, quasi-Newton) to minimize cost J(θ).

·         The gradient of the cost function is:

θJ(θ)=n1i=1n((x(i))y(i))x(i).

  • Update rule in gradient descent:

θ:=θαθJ(θ),

where α is the learning rate.


6. Multi-class Classification

·         When y{1,2,...,k} for k>2, logistic regression generalizes to multinomial logistic regression or Softmax regression.

·         Model outputs hˉθ(x)Rk called logits.

·         The Softmax function converts logits into probabilities:

P(y=jx;θ)=s=1kexp(hˉθ(x)s)exp(hˉθ(x)j).

  • Loss for example (x(i),y(i)) is the negative log-likelihood:

J(i)(θ)=logP(y(i)x(i);θ).


7. Discriminative vs. Generative Classification Algorithms

  • Discriminative algorithms (like logistic regression) model p(yx) directly or learn a direct mapping from x to y.
  • Generative algorithms model the joint distribution p(x,y)=p(xy)p(y).
  • Example: Gaussian Discriminant Analysis (GDA).
  • Logistic regression is an example of a discriminative approach focusing purely on p(yx).

8. Linear Hypothesis Class and Decision Boundaries

  • Logistic regression hypothesis class:

H={:(x)=1{θTx0}},

which are classifiers with linear decision boundaries.

  • More generally, hypothesis classes can be extended to neural networks or other complex architectures.

9. Perceptron Learning as Contrast to Logistic Regression

·         Perceptron also uses a linear classifier but with a different loss and update rule.

·         Logistic regression provides probabilistic outputs and optimizes a convex cost function, generally yielding better statistical properties.


10. Practical Considerations

  • Feature scaling often improves numerical stability.
  • Regularization (e.g., L2) is frequently added to cost to prevent overfitting.
  • Logistic regression handles input features linearly; non-linear boundaries require feature engineering or kernel methods.

Summary:

Logistic regression is a fundamental classification algorithm that models the conditional probability of the positive class using a sigmoid of a linear function of input features. It is trained via maximizing likelihood (or minimizing cross-entropy loss) and extends naturally to multi-class problems via Softmax. It is a discriminative model focusing directly on p(yx) and yields linear decision boundaries. It contrasts with generative models by its direct approach to classification.

 

Comments

Popular posts from this blog

Cone Waves

  Cone waves are a unique EEG pattern characterized by distinctive waveforms that resemble the shape of a cone.  1.      Description : o    Cone waves are EEG patterns that appear as sharp, triangular waveforms resembling the shape of a cone. o   These waveforms typically have an upward and a downward phase, with the upward phase often slightly longer in duration than the downward phase. 2.    Appearance : o On EEG recordings, cone waves are identified by their distinct morphology, with a sharp onset and offset, creating a cone-like appearance. o   The waveforms may exhibit minor asymmetries in amplitude or duration between the upward and downward phases. 3.    Timing : o   Cone waves typically occur as transient events within the EEG recording, lasting for a few seconds. o They may appear sporadically or in clusters, with varying intervals between occurrences. 4.    Clinical Signifi...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

Principle Properties of Research

The principle properties of research encompass key characteristics and fundamental aspects that define the nature, scope, and conduct of research activities. These properties serve as foundational principles that guide researchers in designing, conducting, and interpreting research studies. Here are some principle properties of research: 1.      Systematic Approach: Research is characterized by a systematic and organized approach to inquiry, involving structured steps, procedures, and methodologies. A systematic approach ensures that research activities are conducted in a logical and methodical manner, leading to reliable and valid results. 2.      Rigorous Methodology: Research is based on rigorous methodologies and techniques that adhere to established standards of scientific inquiry. Researchers employ systematic methods for data collection, analysis, and interpretation to ensure the validity and reliability of research findings. 3. ...

Bipolar Montage Description of a Focal Discharge

In a bipolar montage depiction of a focal discharge in EEG recordings, specific electrode pairings are used to capture and visualize the electrical activity associated with a focal abnormality in the brain. Here is an overview of a bipolar montage depiction of a focal discharge: 1.      Definition : o In a bipolar montage, each channel is created by pairing two adjacent electrodes on the scalp to record the electrical potential difference between them. o This configuration allows for the detection of localized electrical activity between specific electrode pairs. 2.    Focal Discharge : o A focal discharge refers to a localized abnormal electrical activity in the brain, often indicative of a focal seizure or epileptic focus. o The focal discharge may manifest as a distinct pattern of abnormal electrical signals at specific electrode locations on the scalp. 3.    Electrode Pairings : o In a bipolar montage depicting a focal discharge, specific elec...

Primary Motor Cortex (M1)

The Primary Motor Cortex (M1) is a key region of the brain involved in the planning, control, and execution of voluntary movements. Here is an overview of the Primary Motor Cortex (M1) and its significance in motor function and neural control: 1.       Location : o   The Primary Motor Cortex (M1) is located in the precentral gyrus of the frontal lobe of the brain, anterior to the central sulcus. o   M1 is situated just in front of the Primary Somatosensory Cortex (S1), which is responsible for processing sensory information from the body. 2.      Function : o   M1 plays a crucial role in the initiation and coordination of voluntary movements by sending signals to the spinal cord and peripheral muscles. o    Neurons in the Primary Motor Cortex are responsible for encoding the direction, force, and timing of movements, translating motor plans into specific muscle actions. 3.      Motor Homunculus : o...