Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Classification and Logistic Regression

1. Classification Problem

  • Definition: Classification is a supervised learning task where the output variable y is discrete-valued rather than continuous.
  • In particular, consider binary classification where y {0,1} (e.g., spam detection: spam =1, not spam =0).
  • Each training example is a pair (x(i), y(i)), where x(i)Rd is a feature vector, and y(i) is the label.

2. Why Not Use Linear Regression for Classification?

  • Linear regression tries to predict continuous values, which is problematic for classification as the prediction can be outside [0,1].
  • For example, predicting y1.5 or −0.2 is meaningless when y is binary.
  • Instead, we want the output (x) to be interpreted as the probability that y=1 given x.

3. Logistic Regression Model

Hypothesis:

(x)=g(θTx)=1+e−θTx1,

where:

  • g(z)=1+e−z1 is the sigmoid function, which maps any real value to the interval (0, 1).
  • θRd+1 are parameters (including intercept term).
  • (x) can be interpreted as the estimated probability P(y=1x;θ).

Decision Boundary:

  • Predict y=1 if (x)0.5; otherwise, predict y=0.
  • The decision boundary corresponds to θTx=0, which is a linear boundary in input space.

4. Loss Function and Cost Function

Probability Model:

  • Logistic regression models conditional probability directly:

P(y=1x;θ)=(x),P(y=0x;θ)=1(x).

  • Equivalently, likelihood for data point (x(i),y(i)):

p(y(i)x(i);θ)=((x(i)))y(i)(1(x(i)))1y(i).

Cost (Loss) Function:

  • Use negative log-likelihood (cross-entropy loss) as cost per example:

J(i)(θ)=[y(i)log(x(i))+(1y(i))log(1(x(i)))].

  • Overall cost function (average over n examples):

J(θ)=n1i=1nJ(i)(θ).

  • This loss is convex in θ, enabling efficient optimization.

5. Training Logistic Regression

·         Use methods such as gradient descent or more advanced optimization (Newton's method, quasi-Newton) to minimize cost J(θ).

·         The gradient of the cost function is:

θJ(θ)=n1i=1n((x(i))y(i))x(i).

  • Update rule in gradient descent:

θ:=θαθJ(θ),

where α is the learning rate.


6. Multi-class Classification

·         When y{1,2,...,k} for k>2, logistic regression generalizes to multinomial logistic regression or Softmax regression.

·         Model outputs hˉθ(x)Rk called logits.

·         The Softmax function converts logits into probabilities:

P(y=jx;θ)=s=1kexp(hˉθ(x)s)exp(hˉθ(x)j).

  • Loss for example (x(i),y(i)) is the negative log-likelihood:

J(i)(θ)=logP(y(i)x(i);θ).


7. Discriminative vs. Generative Classification Algorithms

  • Discriminative algorithms (like logistic regression) model p(yx) directly or learn a direct mapping from x to y.
  • Generative algorithms model the joint distribution p(x,y)=p(xy)p(y).
  • Example: Gaussian Discriminant Analysis (GDA).
  • Logistic regression is an example of a discriminative approach focusing purely on p(yx).

8. Linear Hypothesis Class and Decision Boundaries

  • Logistic regression hypothesis class:

H={:(x)=1{θTx0}},

which are classifiers with linear decision boundaries.

  • More generally, hypothesis classes can be extended to neural networks or other complex architectures.

9. Perceptron Learning as Contrast to Logistic Regression

·         Perceptron also uses a linear classifier but with a different loss and update rule.

·         Logistic regression provides probabilistic outputs and optimizes a convex cost function, generally yielding better statistical properties.


10. Practical Considerations

  • Feature scaling often improves numerical stability.
  • Regularization (e.g., L2) is frequently added to cost to prevent overfitting.
  • Logistic regression handles input features linearly; non-linear boundaries require feature engineering or kernel methods.

Summary:

Logistic regression is a fundamental classification algorithm that models the conditional probability of the positive class using a sigmoid of a linear function of input features. It is trained via maximizing likelihood (or minimizing cross-entropy loss) and extends naturally to multi-class problems via Softmax. It is a discriminative model focusing directly on p(yx) and yields linear decision boundaries. It contrasts with generative models by its direct approach to classification.

 

Comments

Popular posts from this blog

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Mesencephalic Locomotor Region (MLR)

The Mesencephalic Locomotor Region (MLR) is a region in the midbrain that plays a crucial role in the control of locomotion and rhythmic movements. Here is an overview of the MLR and its significance in neuroscience research and motor control: 1.       Location : o The MLR is located in the mesencephalon, specifically in the midbrain tegmentum, near the aqueduct of Sylvius. o   It encompasses a group of neurons that are involved in coordinating and modulating locomotor activity. 2.      Function : o   Control of Locomotion : The MLR is considered a key center for initiating and regulating locomotor movements, including walking, running, and other rhythmic activities. o Rhythmic Movements : Neurons in the MLR are involved in generating and coordinating rhythmic patterns of muscle activity essential for locomotion. o Integration of Sensory Information : The MLR receives inputs from various sensory modalities and higher brain regions t...

Seizures

Seizures are episodes of abnormal electrical activity in the brain that can lead to a wide range of symptoms, from subtle changes in awareness to convulsions and loss of consciousness. Understanding seizures and their manifestations is crucial for accurate diagnosis and management. Here is a detailed overview of seizures: 1.       Definition : o A seizure is a transient occurrence of signs and/or symptoms due to abnormal, excessive, or synchronous neuronal activity in the brain. o Seizures can present in various forms, including focal (partial) seizures that originate in a specific area of the brain and generalized seizures that involve both hemispheres of the brain simultaneously. 2.      Classification : o Seizures are classified into different types based on their clinical presentation and EEG findings. Common seizure types include focal seizures, generalized seizures, and seizures of unknown onset. o The classification of seizures is esse...

Mu Rhythms compared to Ciganek Rhythms

The Mu rhythm and Cigánek rhythm are two distinct EEG patterns with unique characteristics that can be compared based on various features.  1.      Location : o     Mu Rhythm : § The Mu rhythm is maximal at the C3 or C4 electrode, with occasional involvement of the Cz electrode. § It is predominantly observed in the central and precentral regions of the brain. o     Cigánek Rhythm : § The Cigánek rhythm is typically located in the central parasagittal region of the brain. § It is more symmetrically distributed compared to the Mu rhythm. 2.    Frequency : o     Mu Rhythm : §   The Mu rhythm typically exhibits a frequency similar to the alpha rhythm, around 10 Hz. §   Frequencies within the range of 7 to 11 Hz are considered normal for the Mu rhythm. o     Cigánek Rhythm : §   The Cigánek rhythm is slower than the Mu rhythm and is typically outside the alpha frequency range. 3. ...