Skip to main content

Another algorithm for maximizing `(θ)

Context

·         Recall that in logistic regression, we model the probability of the binary label y{0,1} given input x: (x)=g(θTx)=1+exp(−θTx)1 where g() is the sigmoid function.

·         The log-likelihood for n data points is: (θ)=i=1nlogp(y(i)x(i);θ) where p(y=1x;θ)=(x),p(y=0x;θ)=1(x)

·         Maximizing (θ) corresponds to minimizing the negative log-likelihood, which yields the logistic loss.


Common Approach: Gradient Ascent/Descent

  • Typically, logistic regression parameters are estimated by applying gradient ascent (or descent on negative log-likelihood), updating parameters iteratively based on the gradient of (θ).

Alternative Algorithm: Newton's Method (Iteratively Reweighted Least Squares - IRLS)

·         Another algorithm for maximizing (θ) relies on second-order information, specifically the Hessian matrix of second derivatives of (θ).

·         This method is Newton's method applied to maximize the log-likelihood, sometimes called Iteratively Reweighted Least Squares (IRLS) in logistic regression.


Key Idea of the Algorithm

·         Newton's update iteratively updates parameters by: θ(t+1)=θ(t)H−1(θ(t))(θ(t)) where

·         (θ(t)) is the gradient of log-likelihood,

·         H(θ(t)) is the Hessian matrix of second derivatives at iteration t.

·         The Hessian captures curvature of the log-likelihood function, enabling more efficient and often faster convergence than gradient ascent alone.


Logistic Regression (IRLS) Specifics

  • At each iteration:
  • Compute predicted probabilities using current parameters: pi(t)=(t)(x(i))
  • Construct a diagonal weight matrix W where: Wii=pi(t)(1pi(t))
  • Calculate the adjusted response variable z: z=(t)+W−1(yp(t))
  • Update θ by solving the weighted least squares problem: θ(t+1)=(XTWX)−1XTWz

Benefits

  • Faster convergence near the optimum because Newton's method uses curvature information.
  • Quadratic convergence once close to the solution compared to linear convergence of gradient methods.

Tradeoffs

  • Involves computing and inverting the Hessian matrix, which is computationally expensive for large datasets or high-dimensional features.
  • Gradient-based methods (stochastic gradient descent, mini-batch) are more scalable for big data settings.

Summary

  • The alternative algorithm to maximize (θ) is Newton’s method or IRLS, which uses both first and second derivatives.
  • At each iteration, parameters are updated by solving a weighted least squares problem using the Hessian and gradient of the log-likelihood.
  • This often yields faster and more accurate convergence for logistic regression model fitting.

 

Comments

Popular posts from this blog

Cone Waves

  Cone waves are a unique EEG pattern characterized by distinctive waveforms that resemble the shape of a cone.  1.      Description : o    Cone waves are EEG patterns that appear as sharp, triangular waveforms resembling the shape of a cone. o   These waveforms typically have an upward and a downward phase, with the upward phase often slightly longer in duration than the downward phase. 2.    Appearance : o On EEG recordings, cone waves are identified by their distinct morphology, with a sharp onset and offset, creating a cone-like appearance. o   The waveforms may exhibit minor asymmetries in amplitude or duration between the upward and downward phases. 3.    Timing : o   Cone waves typically occur as transient events within the EEG recording, lasting for a few seconds. o They may appear sporadically or in clusters, with varying intervals between occurrences. 4.    Clinical Signifi...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

Principle Properties of Research

The principle properties of research encompass key characteristics and fundamental aspects that define the nature, scope, and conduct of research activities. These properties serve as foundational principles that guide researchers in designing, conducting, and interpreting research studies. Here are some principle properties of research: 1.      Systematic Approach: Research is characterized by a systematic and organized approach to inquiry, involving structured steps, procedures, and methodologies. A systematic approach ensures that research activities are conducted in a logical and methodical manner, leading to reliable and valid results. 2.      Rigorous Methodology: Research is based on rigorous methodologies and techniques that adhere to established standards of scientific inquiry. Researchers employ systematic methods for data collection, analysis, and interpretation to ensure the validity and reliability of research findings. 3. ...

Bipolar Montage Description of a Focal Discharge

In a bipolar montage depiction of a focal discharge in EEG recordings, specific electrode pairings are used to capture and visualize the electrical activity associated with a focal abnormality in the brain. Here is an overview of a bipolar montage depiction of a focal discharge: 1.      Definition : o In a bipolar montage, each channel is created by pairing two adjacent electrodes on the scalp to record the electrical potential difference between them. o This configuration allows for the detection of localized electrical activity between specific electrode pairs. 2.    Focal Discharge : o A focal discharge refers to a localized abnormal electrical activity in the brain, often indicative of a focal seizure or epileptic focus. o The focal discharge may manifest as a distinct pattern of abnormal electrical signals at specific electrode locations on the scalp. 3.    Electrode Pairings : o In a bipolar montage depicting a focal discharge, specific elec...

Primary Motor Cortex (M1)

The Primary Motor Cortex (M1) is a key region of the brain involved in the planning, control, and execution of voluntary movements. Here is an overview of the Primary Motor Cortex (M1) and its significance in motor function and neural control: 1.       Location : o   The Primary Motor Cortex (M1) is located in the precentral gyrus of the frontal lobe of the brain, anterior to the central sulcus. o   M1 is situated just in front of the Primary Somatosensory Cortex (S1), which is responsible for processing sensory information from the body. 2.      Function : o   M1 plays a crucial role in the initiation and coordination of voluntary movements by sending signals to the spinal cord and peripheral muscles. o    Neurons in the Primary Motor Cortex are responsible for encoding the direction, force, and timing of movements, translating motor plans into specific muscle actions. 3.      Motor Homunculus : o...