Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Logistic Regression


Logistic regression is a fundamental classification algorithm widely used for binary and multi-class classification problems. 

1. What is Logistic Regression?

Logistic regression is a supervised learning algorithm designed for classification tasks, especially binary classification where the response variable y takes values in {0,1}. Unlike linear regression, which predicts continuous outputs, logistic regression predicts probabilities that an input x belongs to the positive class (y=1).

2. Hypothesis Function and Model Formulation

In logistic regression, the hypothesis function (x) models the probability p(y=1x;θ) using the logistic (sigmoid) function applied to a linear combination of input features:

(x)=P(y=1x;θ)=1+e−θTx1

where:

  • θRd+1 are the parameters (weights),
  • xRd+1 is the augmented feature vector (usually including a bias term),
  • θTx is the linear predictor,
  • the function g(z)=1+e−z1 is the logistic or sigmoid function,.

This design ensures the output is always between 0 and 1, which can be interpreted as a probability.

3. Statistical Model and Bernoulli Distribution

Logistic regression assumes that the conditional distribution of y given x follows a Bernoulli distribution parameterized by ϕ=(x):

yx;θBernoulli((x))

The expectation of y is:

E[yx;θ]=ϕ=(x)

The use of the Bernoulli distribution leads naturally to the logistic function through the generalized linear model (GLM) framework and the exponential family of distributions.

  • The canonical response function for Bernoulli is logistic sigmoid g(η)=1+e−η1,
  • The canonical link function is the inverse of the response function g−1.

4. Parameter Estimation via Maximum Likelihood

Parameters θ are typically estimated by maximizing the likelihood of the observed data, or equivalently, minimizing the negative log-likelihood (also called the cross-entropy loss function). For training examples {(x(i),y(i))}i=1n, the loss for a single example is:

J(i)(θ)=logp(y(i)x(i);θ)=(y(i)log(x(i))+(1y(i))log(1(x(i))))

And the total cost function is the average loss over all examples:

J(θ)=n1i=1nJ(i)(θ)

The optimization is usually done using gradient descent or variants.

5. Multi-class Logistic Regression (Softmax Regression)

For multi-class classification where y{1,2,,k}, logistic regression generalizes to the softmax function, mapping the outputs to a probability distribution over k classes:

Let the model outputs be logits hˉθ(x)Rk, where each component corresponds to a class:

P(y=jx;θ)=s=1kexp(hˉθ(x)s)exp(hˉθ(x)j)

The loss function per training example is then the negative log likelihood:

J(i)(θ)=logP(y(i)x(i);θ)=log∑s=1kexp(hˉθ(x(i))s)exp(hˉθ(x(i))y(i))

The overall loss is again the average over all training samples.

6. Discriminative vs. Generative Learning Algorithms

Logistic regression is classified as a discriminative algorithm because it models p(yx) directly, learning the boundary between classes without modeling the data distribution p(x). This contrasts with generative algorithms that model p(xy) and p(y) to classify.

7. Hypothesis Class and Decision Boundaries

The set of all classifiers corresponding to logistic regression forms the hypothesis class H:

H={:(x)=1{θTx0}}

Here, 1{} denotes the indicator function (output is 1 if condition holds, 0 otherwise). The decision boundary is the hyperplane θTx=0, which is linear in the input space.

8. Learning Algorithm

In practice, logistic regression parameters are learned by maximizing the likelihood or equivalently minimizing the cross-entropy loss using optimization algorithms such as batch gradient descent, stochastic gradient descent, or more advanced variants. The gradient of the loss with respect to θ can be computed explicitly, enabling efficient learning.

9. Extensions and Relations to Other Learning Models

  • Logistic regression can be derived as a Generalized Linear Model (GLM) where the link function is the logit (the inverse of the sigmoid).
  • It is closely related to the perceptron algorithm and linear classifiers, but logistic regression outputs probabilities and has a probabilistic interpretation unlike the perceptron.
  • Logistic regression models can be generalized further as parts of neural network architectures representing hypothesis classes of more complex models.

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

EEG Amplification

EEG amplification, also known as gain or sensitivity, plays a crucial role in EEG recordings by determining the magnitude of electrical signals detected by the electrodes placed on the scalp. Here is a detailed explanation of EEG amplification: 1. Amplification Settings : EEG machines allow for adjustment of the amplification settings, typically measured in microvolts per millimeter (μV/mm). Common sensitivity settings range from 5 to 10 μV/mm, but a wider range of settings may be used depending on the specific requirements of the EEG recording. 2. High-Amplitude Activity : When high-amplitude signals are present in the EEG, such as during epileptiform discharges or artifacts, it may be necessary to compress the vertical display to visualize the full range of each channel within the available space. This compression helps prevent saturation of the signal and ensures that all amplitude levels are visible. 3. Vertical Compression : Increasing the sensitivity value (e.g., from 10 μV/mm to...

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Uncertainty Estimates from Classifiers

1. Overview of Uncertainty Estimates Many classifiers do more than just output a predicted class label; they also provide a measure of confidence or uncertainty in their predictions. These uncertainty estimates help understand how sure the model is about its decision , which is crucial in real-world applications where different types of errors have different consequences (e.g., medical diagnosis). 2. Why Uncertainty Matters Predictions are often thresholded to produce class labels, but this process discards the underlying probability or decision value. Knowing how confident a classifier is can: Improve decision-making by allowing deferral in uncertain cases. Aid in calibrating models. Help in evaluating the risk associated with predictions. Example: In medical testing, a false negative (missing a disease) can be worse than a false positive (extra test). 3. Methods to Obtain Uncertainty from Classifiers 3.1 ...