Skip to main content

Logistic Regression


Logistic regression is a fundamental classification algorithm widely used for binary and multi-class classification problems. 

1. What is Logistic Regression?

Logistic regression is a supervised learning algorithm designed for classification tasks, especially binary classification where the response variable y takes values in {0,1}. Unlike linear regression, which predicts continuous outputs, logistic regression predicts probabilities that an input x belongs to the positive class (y=1).

2. Hypothesis Function and Model Formulation

In logistic regression, the hypothesis function (x) models the probability p(y=1x;θ) using the logistic (sigmoid) function applied to a linear combination of input features:

(x)=P(y=1x;θ)=1+e−θTx1

where:

  • θRd+1 are the parameters (weights),
  • xRd+1 is the augmented feature vector (usually including a bias term),
  • θTx is the linear predictor,
  • the function g(z)=1+e−z1 is the logistic or sigmoid function,.

This design ensures the output is always between 0 and 1, which can be interpreted as a probability.

3. Statistical Model and Bernoulli Distribution

Logistic regression assumes that the conditional distribution of y given x follows a Bernoulli distribution parameterized by ϕ=(x):

yx;θBernoulli((x))

The expectation of y is:

E[yx;θ]=ϕ=(x)

The use of the Bernoulli distribution leads naturally to the logistic function through the generalized linear model (GLM) framework and the exponential family of distributions.

  • The canonical response function for Bernoulli is logistic sigmoid g(η)=1+e−η1,
  • The canonical link function is the inverse of the response function g−1.

4. Parameter Estimation via Maximum Likelihood

Parameters θ are typically estimated by maximizing the likelihood of the observed data, or equivalently, minimizing the negative log-likelihood (also called the cross-entropy loss function). For training examples {(x(i),y(i))}i=1n, the loss for a single example is:

J(i)(θ)=logp(y(i)x(i);θ)=(y(i)log(x(i))+(1y(i))log(1(x(i))))

And the total cost function is the average loss over all examples:

J(θ)=n1i=1nJ(i)(θ)

The optimization is usually done using gradient descent or variants.

5. Multi-class Logistic Regression (Softmax Regression)

For multi-class classification where y{1,2,,k}, logistic regression generalizes to the softmax function, mapping the outputs to a probability distribution over k classes:

Let the model outputs be logits hˉθ(x)Rk, where each component corresponds to a class:

P(y=jx;θ)=s=1kexp(hˉθ(x)s)exp(hˉθ(x)j)

The loss function per training example is then the negative log likelihood:

J(i)(θ)=logP(y(i)x(i);θ)=log∑s=1kexp(hˉθ(x(i))s)exp(hˉθ(x(i))y(i))

The overall loss is again the average over all training samples.

6. Discriminative vs. Generative Learning Algorithms

Logistic regression is classified as a discriminative algorithm because it models p(yx) directly, learning the boundary between classes without modeling the data distribution p(x). This contrasts with generative algorithms that model p(xy) and p(y) to classify.

7. Hypothesis Class and Decision Boundaries

The set of all classifiers corresponding to logistic regression forms the hypothesis class H:

H={:(x)=1{θTx0}}

Here, 1{} denotes the indicator function (output is 1 if condition holds, 0 otherwise). The decision boundary is the hyperplane θTx=0, which is linear in the input space.

8. Learning Algorithm

In practice, logistic regression parameters are learned by maximizing the likelihood or equivalently minimizing the cross-entropy loss using optimization algorithms such as batch gradient descent, stochastic gradient descent, or more advanced variants. The gradient of the loss with respect to θ can be computed explicitly, enabling efficient learning.

9. Extensions and Relations to Other Learning Models

  • Logistic regression can be derived as a Generalized Linear Model (GLM) where the link function is the logit (the inverse of the sigmoid).
  • It is closely related to the perceptron algorithm and linear classifiers, but logistic regression outputs probabilities and has a probabilistic interpretation unlike the perceptron.
  • Logistic regression models can be generalized further as parts of neural network architectures representing hypothesis classes of more complex models.

Comments

Popular posts from this blog

How can EEG findings help in diagnosing neurological disorders?

EEG findings play a crucial role in diagnosing various neurological disorders by providing valuable information about the brain's electrical activity. Here are some ways EEG findings can aid in the diagnosis of neurological disorders: 1. Epilepsy Diagnosis : EEG is considered the gold standard for diagnosing epilepsy. It can detect abnormal electrical discharges in the brain that are characteristic of seizures. The presence of interictal epileptiform discharges (IEDs) on EEG can support the diagnosis of epilepsy. Additionally, EEG can help classify seizure types, localize seizure onset zones, guide treatment decisions, and assess response to therapy. 2. Status Epilepticus (SE) Detection : EEG is essential in diagnosing status epilepticus, especially nonconvulsive SE, where clinical signs may be subtle or absent. Continuous EEG monitoring can detect ongoing seizure activity in patients with altered mental status, helping differentiate nonconvulsive SE from other conditions. 3. Encep...

Patterns of Special Significance

Patterns of special significance on EEG represent unique waveforms or abnormalities that carry important diagnostic or prognostic implications. These patterns can provide valuable insights into the underlying neurological conditions and guide clinical management. Here is a detailed overview of patterns of special significance on EEG: 1.       Status Epilepticus (SE) : o SE is a life-threatening condition characterized by prolonged seizures or recurrent seizures without regaining full consciousness between episodes. EEG monitoring is crucial in diagnosing and managing SE, especially in cases of nonconvulsive SE where clinical signs may be subtle. o EEG patterns in SE can vary and may include continuous or discontinuous features, periodic discharges, and evolving spatial spread of seizure activity. The EEG can help classify SE as generalized or focal based on the seizure patterns observed. 2.      Stupor and Coma : o EEG recordings in patients ...

Research Methods

Research methods refer to the specific techniques, procedures, and tools that researchers use to collect, analyze, and interpret data in a systematic and organized manner. The choice of research methods depends on the research questions, objectives, and the nature of the study. Here are some common research methods used in social sciences, business, and other fields: 1.      Quantitative Research Methods : §   Surveys : Surveys involve collecting data from a sample of individuals through questionnaires or interviews to gather information about attitudes, behaviors, preferences, or demographics. §   Experiments : Experiments involve manipulating variables in a controlled setting to test causal relationships and determine the effects of interventions or treatments. §   Observational Studies : Observational studies involve observing and recording behaviors, interactions, or phenomena in natural settings without intervention. §   Secondary Data Analys...

Empherical Research in India in particular creates so many problems for the researchers.

Empirical research in India, like in many other countries, presents unique challenges and issues for researchers. Some of the common problems faced by researchers conducting empirical studies in India include: 1.      Limited Access to Data : §   Availability of reliable and comprehensive data sets for research purposes can be a significant challenge in India. Researchers may struggle to access relevant data due to restrictions, lack of transparency, or inadequate data collection mechanisms. 2.      Quality of Data : §   Ensuring the quality and accuracy of data collected in empirical research can be challenging in India. Issues such as data inconsistencies, errors, and biases in data collection processes can impact the reliability of research findings. 3.      Infrastructure and Technology : §   Inadequate infrastructure, limited access to advanced technology, and insufficient technical support can hinder the da...

What are the key reasons for the enduring role of EEG in clinical practice despite advancements in laboratory medicine and brain imaging?

The enduring role of EEG in clinical practice can be attributed to several key reasons: 1. Unique Information on Brain Function : EEG provides a direct measure of brain electrical activity, offering insights into brain function that cannot be obtained through other diagnostic tests like imaging studies. It captures real-time neuronal activity and can detect abnormalities in brain function that may not be apparent on structural imaging alone. 2. Temporal Resolution : EEG has excellent temporal resolution, capable of detecting changes in electrical potentials in the range of milliseconds. This high temporal resolution allows for the real-time monitoring of brain activity, making EEG invaluable in diagnosing conditions like epilepsy and monitoring brain function during procedures. 3. Cost-Effectiveness : EEG is a relatively low-cost diagnostic test compared to advanced imaging techniques like MRI or CT scans. Its affordability makes it accessible in a wide range of clinical settings, allo...