Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Logistic Regression


Logistic regression is a fundamental classification algorithm widely used for binary and multi-class classification problems. 

1. What is Logistic Regression?

Logistic regression is a supervised learning algorithm designed for classification tasks, especially binary classification where the response variable y takes values in {0,1}. Unlike linear regression, which predicts continuous outputs, logistic regression predicts probabilities that an input x belongs to the positive class (y=1).

2. Hypothesis Function and Model Formulation

In logistic regression, the hypothesis function (x) models the probability p(y=1x;θ) using the logistic (sigmoid) function applied to a linear combination of input features:

(x)=P(y=1x;θ)=1+e−θTx1

where:

  • θRd+1 are the parameters (weights),
  • xRd+1 is the augmented feature vector (usually including a bias term),
  • θTx is the linear predictor,
  • the function g(z)=1+e−z1 is the logistic or sigmoid function,.

This design ensures the output is always between 0 and 1, which can be interpreted as a probability.

3. Statistical Model and Bernoulli Distribution

Logistic regression assumes that the conditional distribution of y given x follows a Bernoulli distribution parameterized by ϕ=(x):

yx;θBernoulli((x))

The expectation of y is:

E[yx;θ]=ϕ=(x)

The use of the Bernoulli distribution leads naturally to the logistic function through the generalized linear model (GLM) framework and the exponential family of distributions.

  • The canonical response function for Bernoulli is logistic sigmoid g(η)=1+e−η1,
  • The canonical link function is the inverse of the response function g−1.

4. Parameter Estimation via Maximum Likelihood

Parameters θ are typically estimated by maximizing the likelihood of the observed data, or equivalently, minimizing the negative log-likelihood (also called the cross-entropy loss function). For training examples {(x(i),y(i))}i=1n, the loss for a single example is:

J(i)(θ)=logp(y(i)x(i);θ)=(y(i)log(x(i))+(1y(i))log(1(x(i))))

And the total cost function is the average loss over all examples:

J(θ)=n1i=1nJ(i)(θ)

The optimization is usually done using gradient descent or variants.

5. Multi-class Logistic Regression (Softmax Regression)

For multi-class classification where y{1,2,,k}, logistic regression generalizes to the softmax function, mapping the outputs to a probability distribution over k classes:

Let the model outputs be logits hˉθ(x)Rk, where each component corresponds to a class:

P(y=jx;θ)=s=1kexp(hˉθ(x)s)exp(hˉθ(x)j)

The loss function per training example is then the negative log likelihood:

J(i)(θ)=logP(y(i)x(i);θ)=log∑s=1kexp(hˉθ(x(i))s)exp(hˉθ(x(i))y(i))

The overall loss is again the average over all training samples.

6. Discriminative vs. Generative Learning Algorithms

Logistic regression is classified as a discriminative algorithm because it models p(yx) directly, learning the boundary between classes without modeling the data distribution p(x). This contrasts with generative algorithms that model p(xy) and p(y) to classify.

7. Hypothesis Class and Decision Boundaries

The set of all classifiers corresponding to logistic regression forms the hypothesis class H:

H={:(x)=1{θTx0}}

Here, 1{} denotes the indicator function (output is 1 if condition holds, 0 otherwise). The decision boundary is the hyperplane θTx=0, which is linear in the input space.

8. Learning Algorithm

In practice, logistic regression parameters are learned by maximizing the likelihood or equivalently minimizing the cross-entropy loss using optimization algorithms such as batch gradient descent, stochastic gradient descent, or more advanced variants. The gradient of the loss with respect to θ can be computed explicitly, enabling efficient learning.

9. Extensions and Relations to Other Learning Models

  • Logistic regression can be derived as a Generalized Linear Model (GLM) where the link function is the logit (the inverse of the sigmoid).
  • It is closely related to the perceptron algorithm and linear classifiers, but logistic regression outputs probabilities and has a probabilistic interpretation unlike the perceptron.
  • Logistic regression models can be generalized further as parts of neural network architectures representing hypothesis classes of more complex models.

Comments

Popular posts from this blog

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Mesencephalic Locomotor Region (MLR)

The Mesencephalic Locomotor Region (MLR) is a region in the midbrain that plays a crucial role in the control of locomotion and rhythmic movements. Here is an overview of the MLR and its significance in neuroscience research and motor control: 1.       Location : o The MLR is located in the mesencephalon, specifically in the midbrain tegmentum, near the aqueduct of Sylvius. o   It encompasses a group of neurons that are involved in coordinating and modulating locomotor activity. 2.      Function : o   Control of Locomotion : The MLR is considered a key center for initiating and regulating locomotor movements, including walking, running, and other rhythmic activities. o Rhythmic Movements : Neurons in the MLR are involved in generating and coordinating rhythmic patterns of muscle activity essential for locomotion. o Integration of Sensory Information : The MLR receives inputs from various sensory modalities and higher brain regions t...

Seizures

Seizures are episodes of abnormal electrical activity in the brain that can lead to a wide range of symptoms, from subtle changes in awareness to convulsions and loss of consciousness. Understanding seizures and their manifestations is crucial for accurate diagnosis and management. Here is a detailed overview of seizures: 1.       Definition : o A seizure is a transient occurrence of signs and/or symptoms due to abnormal, excessive, or synchronous neuronal activity in the brain. o Seizures can present in various forms, including focal (partial) seizures that originate in a specific area of the brain and generalized seizures that involve both hemispheres of the brain simultaneously. 2.      Classification : o Seizures are classified into different types based on their clinical presentation and EEG findings. Common seizure types include focal seizures, generalized seizures, and seizures of unknown onset. o The classification of seizures is esse...

Mu Rhythms compared to Ciganek Rhythms

The Mu rhythm and Cigánek rhythm are two distinct EEG patterns with unique characteristics that can be compared based on various features.  1.      Location : o     Mu Rhythm : § The Mu rhythm is maximal at the C3 or C4 electrode, with occasional involvement of the Cz electrode. § It is predominantly observed in the central and precentral regions of the brain. o     Cigánek Rhythm : § The Cigánek rhythm is typically located in the central parasagittal region of the brain. § It is more symmetrically distributed compared to the Mu rhythm. 2.    Frequency : o     Mu Rhythm : §   The Mu rhythm typically exhibits a frequency similar to the alpha rhythm, around 10 Hz. §   Frequencies within the range of 7 to 11 Hz are considered normal for the Mu rhythm. o     Cigánek Rhythm : §   The Cigánek rhythm is slower than the Mu rhythm and is typically outside the alpha frequency range. 3. ...