Skip to main content

The normal equations

The normal equations are a mathematical formulation used in linear regression to find the best-fitting line (or hyperplane) through a set of data points. They provide a way to directly compute the parameters (coefficients) of a linear model.

1. Overview of Linear Regression

In linear regression, we aim to model the relationship between a dependent variable y and one or more independent variables (features) x1x2,xp. The model can be expressed in the following linear form:

y=θ0+θ1x1+θ2x2++θpxp

Where:

  • θ₀ is the intercept,
  • θ1,,θp are the coefficients for the independent variables.

2. Objective of Linear Regression

The goal is to find the coefficients θ (represented as a vector) such that the predicted values y^ minimize the sum of the squared differences between the observed values y and the predicted values y^:

J(θ)=i=1n(y(i)y^(i))2=i=1n(y(i)θTx(i))2

Where x(i) is the feature vector for the i-th observation, and y^(i)=θTx(i).

3. Deriving the Normal Equations

To minimize the cost function J(θ), we perform gradient descent or directly derive the normal equations. The derivation involves taking the gradient of the cost function and setting it to zero.

Step 1: Matrix Formulation

Let X be the design matrix where each row corresponds to a training example and each column corresponds to a feature:

X=111x11x21xn1​​x12x22xn2​​……x1px2pxnp​​​

The vector of outputs y can be represented as:

y=y(1)y(2)y(n)​​

And the parameters can be represented as a vector:

θ=θ0θ1θp​​​

Step 2: Cost Function in Matrix Form

The cost function can now be expressed in matrix form as:

J(θ)=(y)T(y)=yTy2θTXTy+θTXTXθ

Step 3: Gradient Calculation

We take the gradient with respect to θ:

J(θ)=−2XTy+2XTXθ

Step 4: Setting Gradient to Zero

Setting the gradient to zero for minimization:

−2XTy+2XTXθ=0

This simplifies to:

XTXθ=XTy

This is the normal equation. If XTX is invertible, we can solve for θ:

θ=(XTX)−1XTy

4. Properties of the Normal Equations

  • Efficiency: The normal equation provides a closed-form solution, which can be computed in one step rather than iteratively.
  • Computational Complexity: The computation of (XTX)−1 can be computationally expensive for large datasets, leading to potential numerical stability issues.

5. Applications

The normal equations are used in:

  • Linear Regression: To find the optimal parameters.
  • Machine Learning Models: Many models leverage linear algebra formulations similar to the normal equations.

6. Limitations

While the normal equations are powerful, they have limitations:

  • Inversion Problems: If XTX is singular (non-invertible), it leads to issues. This can occur when there is multicollinearity among features.
  • Scalability: For very large datasets, iterative approaches such as gradient descent may be preferred due to computational constraints in computing the inverse.

Conclusion

The normal equations provide a foundational method for performing linear regression, allowing practitioners to derive model parameters efficiently when applicable conditions are met. More intricate formulations and algorithms can build upon this foundation for complex models and tasks in machine learning.

 

Comments

Popular posts from this blog

Experimental Research Design

Experimental research design is a type of research design that involves manipulating one or more independent variables to observe the effect on one or more dependent variables, with the aim of establishing cause-and-effect relationships. Experimental studies are characterized by the researcher's control over the variables and conditions of the study to test hypotheses and draw conclusions about the relationships between variables. Here are key components and characteristics of experimental research design: 1.     Controlled Environment : Experimental research is conducted in a controlled environment where the researcher can manipulate and control the independent variables while minimizing the influence of extraneous variables. This control helps establish a clear causal relationship between the independent and dependent variables. 2.     Random Assignment : Participants in experimental studies are typically randomly assigned to different experimental condit...

Brain Computer Interface

A Brain-Computer Interface (BCI) is a direct communication pathway between the brain and an external device or computer that allows for control of the device using brain activity. BCIs translate brain signals into commands that can be understood by computers or other devices, enabling interaction without the use of physical movement or traditional input methods. Components of BCIs: 1.       Signal Acquisition : BCIs acquire brain signals using methods such as: Electroencephalography (EEG) : Non-invasive method that measures electrical activity in the brain via electrodes placed on the scalp. Invasive Techniques : Such as implanting electrodes directly into the brain, which can provide higher quality signals but come with greater risks. Other methods can include fMRI (functional Magnetic Resonance Imaging) and fNIRS (functional Near-Infrared Spectroscopy). 2.      Signal Processing : Once brain si...

Prerequisite Knowledge for a Quantitative Analysis

To conduct a quantitative analysis in biomechanics, researchers and practitioners require a solid foundation in various key areas. Here are some prerequisite knowledge areas essential for performing quantitative analysis in biomechanics: 1.     Anatomy and Physiology : o     Understanding the structure and function of the human body, including bones, muscles, joints, and organs, is crucial for biomechanical analysis. o     Knowledge of anatomical terminology, muscle actions, joint movements, and physiological processes provides the basis for analyzing human movement. 2.     Physics : o     Knowledge of classical mechanics, including concepts of force, motion, energy, and momentum, is fundamental for understanding the principles underlying biomechanical analysis. o     Understanding Newton's laws of motion, principles of equilibrium, and concepts of work, energy, and power is essential for quantifyi...

Conducting a Qualitative Analysis

Conducting a qualitative analysis in biomechanics involves a systematic process of collecting, analyzing, and interpreting non-numerical data to gain insights into human movement patterns, behaviors, and interactions. Here are the key steps involved in conducting a qualitative analysis in biomechanics: 1.     Data Collection : o     Use appropriate data collection methods such as video recordings, observational notes, interviews, or focus groups to capture qualitative information about human movement. o     Ensure that data collection is conducted in a systematic and consistent manner to gather rich and detailed insights. 2.     Data Organization : o     Organize the collected qualitative data systematically, such as transcribing interviews, categorizing observational notes, or indexing video recordings for easy reference during analysis. o     Use qualitative data management tools or software to f...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...