Skip to main content

The Mathematical Models used in 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics.


 

The mathematical models to the reconstruction of cardiac muscle fiber architecture in biventricular geometries and the development of a 3D cardiac electromechanical (EM) model coupled with a 0D closed-loop model for the cardiovascular system. Here is an overview of the mathematical models discussed in the document:

 1. Fiber Generation Methods: The document outlines the methods used to reconstruct the cardiac muscle fiber architecture in biventricular geometries. Specifically, Laplace-Dirichlet-Rule-Based-Methods (LDRBMs) are employed to generate realistic fiber orientations within the heart. These methods involve solving Laplace boundary-value problems to determine the orientation of myocardial fibers based on boundary conditions on the heart's surfaces.

 2. 3D Cardiac EM Model: The document presents a detailed 3D cardiac electromechanical model that captures the biophysical processes involved in heart function. This model integrates aspects of electrophysiology, active contraction of cardiomyocytes, tissue mechanics, and blood circulation within the heart chambers. By considering these components, the model can simulate the electromechanical behavior of the heart in a comprehensive manner.

 3. 0D Closed-Loop Model: In addition to the 3D cardiac EM model, the document discusses the incorporation of a 0D closed-loop model for the cardiovascular system. This model represents the hemodynamics of the entire circulatory system using lumped parameters to simulate blood flow dynamics, pressure-volume relationships, and systemic interactions. The coupling of the 3D EM model with the 0D closed-loop model enables a holistic simulation of the heart's electromechanical activity in the context of circulatory dynamics.

 4. Numerical Approximation: The document also covers the numerical discretization strategies employed to solve the coupled 3D-0D model. This includes space and time discretizations using the Finite Element Method (FEM) with different mesh resolutions to handle the varying scales of electromechanical and hemodynamic processes. The Segregated-Intergrid-Staggered (SIS) approach is utilized to sequentially solve the core models contributing to cardiac EM and blood circulation.

 Overall, the mathematical models presented in the document provide a framework for simulating biventricular electromechanics and studying the complex interactions between the heart and the circulatory system. These models enable researchers to investigate cardiac function, electromechanical behavior, and hemodynamic responses in a comprehensive and integrated manner.


Piersanti, R., Regazzoni, F., Salvador, M., Corno, A. F., Dede', L., Vergara, C., & Quarteroni, A. (2021). 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics. *arXiv preprint arXiv:2108.01907*.

Comments

Popular posts from this blog

How do pharmacological interventions targeting NMDA glutamate receptors and PKCc affect alcohol drinking behavior in mice?

Pharmacological interventions targeting NMDA glutamate receptors and PKCc can have significant effects on alcohol drinking behavior in mice. In the context of the study discussed in the PDF file, the researchers investigated the impact of these interventions on ethanol-preferring behavior in mice lacking type 1 equilibrative nucleoside transporter (ENT1). 1.   NMDA Glutamate Receptor Inhibition : Inhibition of NMDA glutamate receptors can reduce ethanol drinking behavior in mice. This suggests that NMDA receptor-mediated signaling plays a role in regulating alcohol consumption. By blocking NMDA receptors, the researchers were able to observe a decrease in ethanol intake in ENT1 null mice, indicating that NMDA receptor activity is involved in the modulation of alcohol preference. 2.   PKCc Inhibition : Down-regulation of intracellular PKCc-neurogranin (Ng)-Ca2+-calmodulin dependent protein kinase type II (CaMKII) signaling through PKCc inhibition is correlated with reduced CREB activity

Distinguishing features of Wickets Rhythms

The wicket rhythm pattern in EEG recordings has several distinguishing features that differentiate it from other EEG patterns.  1.      Waveform : o   The wicket rhythm is characterized by a unique waveform consisting of monophasic waves with alternating sharply contoured and rounded phases, giving it an arciform appearance. o    This waveform includes negative sharp components followed by positive rounded components, similar to the mu rhythm but with distinct features. 2.    Frequency : o The wicket rhythm typically occurs within the alpha frequency range, although it may occasionally manifest in the theta frequency range. o Unlike some focal seizures and subclinical rhythmic electrographic discharges of adults, the wicket rhythm lacks evolution in frequency, waveform, or distribution during its occurrence. 3.    Location : o   Wicket rhythms are often maximal over the anterior or mid-temporal regions and may exhibit unilateral occurrence with shifting asymmetry that maintains bilater

Complex Random Sampling Designs

Complex random sampling designs refer to sampling methods that involve a combination of various random sampling techniques to select a sample from a population. These designs often incorporate elements of both probability and non-probability sampling methods to achieve specific research objectives. Here are some key points about complex random sampling designs: 1.     Definition : o     Complex random sampling designs involve the use of multiple random sampling methods, such as systematic sampling, stratified sampling, cluster sampling, etc., in a structured manner to select a sample from a population. o     These designs aim to improve the representativeness, efficiency, and precision of the sample by combining different random sampling techniques. 2.     Purpose : o    The primary goal of complex random sampling designs is to enhance the quality of the sample by addressing specific characteristics or requirements of the population. o     Researchers may use these designs to increase

How the Neural network circuits works in Parkinson's Disease?

  In Parkinson's disease, the neural network circuits involved in motor control are disrupted, leading to characteristic motor symptoms such as tremor, bradykinesia, and rigidity. The primary brain regions affected in Parkinson's disease include the basal ganglia and the cortex. Here is an overview of how neural network circuits work in Parkinson's disease: 1.      Basal Ganglia Dysfunction: The basal ganglia are a group of subcortical nuclei involved in motor control. In Parkinson's disease, there is a loss of dopamine-producing neurons in the substantia nigra, leading to decreased dopamine levels in the basal ganglia. This dopamine depletion results in abnormal signaling within the basal ganglia circuitry, leading to motor symptoms. 2.      Cortical Involvement: The cortex, particularly the motor cortex, plays a crucial role in initiating and coordinating voluntary movements. In Parkinson's disease, abnormal activity in the cortex, especially in the beta and gamma

How do genetic, environmental, biochemical, and physical events interact to influence neurodevelopment?

Genetic, environmental, biochemical, and physical events interact in a complex manner to influence neurodevelopment. Here is an explanation of how each of these factors plays a role: 1.      Genetic Factors: Genetic factors provide the blueprint for neurodevelopment by determining the initial structure and function of the brain. Genes regulate processes such as neuronal differentiation, migration, and connectivity, which are essential for the formation of neural circuits. Variations in genes can impact the development of the brain and contribute to neurodevelopmental disorders. 2.      Environmental Factors: Environmental factors, including prenatal and postnatal experiences, exposure to toxins, nutrition, and social interactions, can significantly influence neurodevelopment. Environmental stimuli can shape neuronal connections, synaptic plasticity, and brain structure. Adverse environmental conditions, such as stress or malnutrition, can disrupt normal neurodevelopment and lead to c