Skip to main content

The Mathematical Models used in 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics.


 

The mathematical models to the reconstruction of cardiac muscle fiber architecture in biventricular geometries and the development of a 3D cardiac electromechanical (EM) model coupled with a 0D closed-loop model for the cardiovascular system. Here is an overview of the mathematical models discussed in the document:

 1. Fiber Generation Methods: The document outlines the methods used to reconstruct the cardiac muscle fiber architecture in biventricular geometries. Specifically, Laplace-Dirichlet-Rule-Based-Methods (LDRBMs) are employed to generate realistic fiber orientations within the heart. These methods involve solving Laplace boundary-value problems to determine the orientation of myocardial fibers based on boundary conditions on the heart's surfaces.

 2. 3D Cardiac EM Model: The document presents a detailed 3D cardiac electromechanical model that captures the biophysical processes involved in heart function. This model integrates aspects of electrophysiology, active contraction of cardiomyocytes, tissue mechanics, and blood circulation within the heart chambers. By considering these components, the model can simulate the electromechanical behavior of the heart in a comprehensive manner.

 3. 0D Closed-Loop Model: In addition to the 3D cardiac EM model, the document discusses the incorporation of a 0D closed-loop model for the cardiovascular system. This model represents the hemodynamics of the entire circulatory system using lumped parameters to simulate blood flow dynamics, pressure-volume relationships, and systemic interactions. The coupling of the 3D EM model with the 0D closed-loop model enables a holistic simulation of the heart's electromechanical activity in the context of circulatory dynamics.

 4. Numerical Approximation: The document also covers the numerical discretization strategies employed to solve the coupled 3D-0D model. This includes space and time discretizations using the Finite Element Method (FEM) with different mesh resolutions to handle the varying scales of electromechanical and hemodynamic processes. The Segregated-Intergrid-Staggered (SIS) approach is utilized to sequentially solve the core models contributing to cardiac EM and blood circulation.

 Overall, the mathematical models presented in the document provide a framework for simulating biventricular electromechanics and studying the complex interactions between the heart and the circulatory system. These models enable researchers to investigate cardiac function, electromechanical behavior, and hemodynamic responses in a comprehensive and integrated manner.


Piersanti, R., Regazzoni, F., Salvador, M., Corno, A. F., Dede', L., Vergara, C., & Quarteroni, A. (2021). 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics. *arXiv preprint arXiv:2108.01907*.

Comments

Popular posts from this blog

How can EEG findings help in diagnosing neurological disorders?

EEG findings play a crucial role in diagnosing various neurological disorders by providing valuable information about the brain's electrical activity. Here are some ways EEG findings can aid in the diagnosis of neurological disorders: 1. Epilepsy Diagnosis : EEG is considered the gold standard for diagnosing epilepsy. It can detect abnormal electrical discharges in the brain that are characteristic of seizures. The presence of interictal epileptiform discharges (IEDs) on EEG can support the diagnosis of epilepsy. Additionally, EEG can help classify seizure types, localize seizure onset zones, guide treatment decisions, and assess response to therapy. 2. Status Epilepticus (SE) Detection : EEG is essential in diagnosing status epilepticus, especially nonconvulsive SE, where clinical signs may be subtle or absent. Continuous EEG monitoring can detect ongoing seizure activity in patients with altered mental status, helping differentiate nonconvulsive SE from other conditions. 3. Encep...

Research Methods

Research methods refer to the specific techniques, procedures, and tools that researchers use to collect, analyze, and interpret data in a systematic and organized manner. The choice of research methods depends on the research questions, objectives, and the nature of the study. Here are some common research methods used in social sciences, business, and other fields: 1.      Quantitative Research Methods : §   Surveys : Surveys involve collecting data from a sample of individuals through questionnaires or interviews to gather information about attitudes, behaviors, preferences, or demographics. §   Experiments : Experiments involve manipulating variables in a controlled setting to test causal relationships and determine the effects of interventions or treatments. §   Observational Studies : Observational studies involve observing and recording behaviors, interactions, or phenomena in natural settings without intervention. §   Secondary Data Analys...

Research Report Making

Creating a research report is a crucial step in the research process as it involves documenting and communicating the research findings, methodology, analysis, and conclusions to a wider audience. Here is an overview of the key components and steps involved in making a research report: Title Page : Includes the title of the research report, the names of the authors, their affiliations, the date of publication, and any other relevant information. Abstract : Provides a concise summary of the research study, including the research objectives, methodology, key findings, and conclusions. It gives readers a quick overview of the research without having to read the entire report. Table of Contents : Lists the sections, subsections, and page numbers of the report for easy navigation and reference. Introduction : Introduces the research topic, objectives, research questions, and the significance of the study. It sets th...

Distinguished Features of Cardiac Artifacts

The distinguished features of cardiac artifacts in EEG recordings include characteristics specific to different types of cardiac artifacts, such as ECG artifacts, pacemaker artifacts, and pulse artifacts.  1.      ECG Artifacts : o    Waveform : ECG artifacts typically appear as poorly formed QRS complexes, with the P wave and T wave usually not evident. The QRS complex may be diphasic or monophasic. o     Location : ECG artifacts are often better formed and larger on the left side when using bipolar montages, with clearer QRS waveforms over the temporal regions. o    Regular Intervals : ECG artifacts may exhibit periodic occurrences with intervals that are multiples of a similar time interval, aiding in their identification. o   Conservation of Waveform : ECG artifacts show conservation of waveform and temporal association with the QRS complex in an ECG channel, helping differentiate them from other patterns. 2.  ...

Nanotechnology, Nanomedicine and Biomedical Targets in Neurodegenerative Disease

Nanotechnology and nanomedicine have emerged as promising fields for addressing challenges in the diagnosis, treatment, and understanding of neurodegenerative diseases. Here are some key points regarding the application of nanotechnology and nanomedicine in targeting neurodegenerative diseases: 1.       Nanoparticle-Based Drug Delivery : o Nanoparticles can be engineered to deliver therapeutic agents across the blood-brain barrier (BBB) and target specific regions of the brain affected by neurodegenerative diseases. o Functionalized nanoparticles can enhance drug stability, bioavailability, and targeted delivery to neuronal cells, offering potential for improved treatment outcomes. 2.      Theranostic Nanoparticles : o Theranostic nanoparticles combine therapeutic and diagnostic capabilities, enabling simultaneous treatment and monitoring of neurodegenerative diseases. o These multifunctional nanoparticles can provide real-time imaging of dis...