Skip to main content

How does sensorimotor mu rhythm activity impact corticospinal output during TMS delivery?


Sensorimotor mu rhythm activity plays a significant role in influencing corticospinal output during transcranial magnetic stimulation (TMS) delivery. The sensorimotor mu rhythm is an oscillatory brain activity that occurs in the frequency range of 8-13 Hz and is predominantly observed over sensorimotor cortical regions. Here is how sensorimotor mu rhythm activity impacts corticospinal output during TMS delivery:


1.     Phase-Dependent Effects: Studies have shown that the phase of the sensorimotor mu rhythm can influence corticospinal excitability. Specifically, corticospinal output is modulated by the phase of the mu rhythm, with increased excitability observed during specific phases of the mu rhythm cycle. For example, corticospinal output tends to be higher during the trough (negative peak) phases of the mu rhythm compared to the peak (positive peak) phases.

2.     Enhancement vs. Suppression: When TMS is delivered to the primary motor cortex (M1) during the trough phases of the mu rhythm, it can lead to enhanced corticospinal transmission and improved motor learning. In contrast, TMS delivered during the peak phases of the mu rhythm may result in weaker corticospinal transmission and have less impact on motor learning. This phase-dependent effect highlights the importance of timing TMS interventions based on the ongoing sensorimotor mu rhythm activity.

3.     Interhemispheric Communication: In addition to influencing corticospinal output, sensorimotor mu rhythm activity also affects interhemispheric communication between homologous motor cortex regions. Studies have demonstrated that the phase synchronicity of the mu rhythm can determine the efficacy of communication between motor cortices, further emphasizing the role of mu rhythm activity in shaping neural interactions.

4.     Complex Interplay: The interplay between sensorimotor mu rhythm phase and power is complex and interdependent in shaping corticospinal tract activity. Both the phase and power of the mu rhythm contribute to modulating corticospinal output, highlighting the need to consider both aspects when utilizing TMS for measurement or interventional purposes.


In conclusion, sensorimotor mu rhythm activity exerts a significant influence on corticospinal output during TMS delivery, with phase-dependent effects playing a crucial role in modulating neural excitability and motor learning processes. Understanding and leveraging the impact of mu rhythm activity can enhance the efficacy of TMS interventions and provide insights into the mechanisms underlying motor control and plasticity in the human brain.

 

 

Hussain, S. J., Claudino, L., Bönstrup, M., Norato, G., Cruciani, G., Thompson, R., ... Cohen, L. G. (2019). Sensorimotor oscillatory phase–power interaction gates resting human corticospinal output. Cerebral Cortex, 29(9), 3766–3777. https://doi.org/10.1093/cercor/bhy255.

Comments

Popular posts from this blog

Human Connectome Project

The Human Connectome Project (HCP) is a large-scale research initiative that aims to map the structural and functional connectivity of the human brain. Launched in 2009, the HCP utilizes advanced neuroimaging techniques to create detailed maps of the brain's neural pathways and networks in healthy individuals. The project focuses on understanding how different regions of the brain communicate and interact with each other, providing valuable insights into brain function and organization. 1.      Structural Connectivity : The HCP uses diffusion MRI to map the white matter pathways in the brain, revealing the structural connections between different brain regions. This information helps researchers understand the physical wiring of the brain and how information is transmitted between regions. 2.      Functional Connectivity : Functional MRI (fMRI) is employed to study the patterns of brain activity and connectivity while individuals are at rest (...

Clinical Significance of Hypnopompic, Hypnagogic, and Hedonic Hypersynchron

Hypnopompic, hypnagogic, and hedonic hypersynchrony are normal pediatric phenomena with no significant clinical relevance. These types of hypersynchrony are considered variations in brain activity that occur during specific states such as arousal from sleep (hypnopompic), transition from wakefulness to sleep (hypnagogic), or pleasurable activities (hedonic). While these patterns may be observed on an EEG, they are not indicative of any underlying pathology or neurological disorder. Therefore, the presence or absence of hypnopompic, hypnagogic, and hedonic hypersynchrony does not carry any specific clinical implications. It is important to differentiate these normal variations in brain activity from abnormal patterns that may be associated with neurological conditions, such as epileptiform discharges or other pathological findings. Understanding the clinical significance of these normal phenomena helps in accurate EEG interpretation and clinical decision-making.  

Distinguishing Features of Alpha Activity

Alpha activity in EEG recordings has distinguishing features that differentiate it from other brain wave patterns.  1.      Frequency Range : o   Alpha activity typically occurs in the frequency range of 8 to 13 Hz. o   The alpha rhythm is most prominent in the posterior head regions during relaxed wakefulness with eyes closed. 2.    Location : o   Alpha activity is often observed over the occipital regions of the brain, known as the occipital alpha rhythm or posterior dominant rhythm. o   In drowsiness, the alpha rhythm may extend anteriorly to include the frontal region bilaterally. 3.    Modulation : o   The alpha rhythm can attenuate or disappear with drowsiness, concentration, stimulation, or visual fixation. o   Abrupt loss of the alpha rhythm due to visual or cognitive activity is termed blocking. 4.    Behavioral State : o   The presence of alpha activity is associated with a state of relax...

Alpha Activity

Alpha activity in electroencephalography (EEG) refers to a specific frequency range of brain waves typically observed in relaxed and awake individuals. Here is an overview of alpha activity in EEG: 1.      Frequency Range : o Alpha waves are oscillations in the frequency range of approximately 8 to 12 Hz (cycles per second). o They are most prominent in the posterior regions of the brain, particularly in the occipital area. 2.    Characteristics : o Alpha waves are considered to be a sign of a relaxed but awake state, often observed when individuals are awake with their eyes closed. o They are typically monotonous, monomorphic, and symmetric, with a predominant anterior distribution. 3.    Variations : o Alpha activity can vary based on factors such as age, mental state, and neurological conditions. o Variations in alpha frequency, amplitude, and distribution can provide insights into brain function and cognitive processes. 4.    Clinica...

The expression of Notch-related genes in the differentiation of BMSCs into dopaminergic neuron-like cells.

  The expression of Notch-related genes plays a crucial role in the differentiation of human bone marrow mesenchymal stem cells (h-BMSCs) into dopaminergic neuron-like cells. The Notch signaling pathway is involved in regulating cell fate decisions, including the differentiation of BMSCs. In the study discussed in the PDF file, changes in the expression of Notch-related genes were observed during the differentiation process. Specifically, the study utilized a human Notch signaling pathway PCR array to detect the expression levels of 84 genes related to the Notch signaling pathway, including ligands, receptors, target genes, cell proliferation and differentiation-related genes, and neurogenesis-related genes. The array also included genes from other signaling pathways that intersect with the Notch pathway, such as Sonic hedgehog and Wnt receptor signaling pathway members. During the differentiation of h-BMSCs into dopaminergic neuron-like cells, the expression levels of Notch-re...