Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

How does sensorimotor mu rhythm activity impact corticospinal output during TMS delivery?


Sensorimotor mu rhythm activity plays a significant role in influencing corticospinal output during transcranial magnetic stimulation (TMS) delivery. The sensorimotor mu rhythm is an oscillatory brain activity that occurs in the frequency range of 8-13 Hz and is predominantly observed over sensorimotor cortical regions. Here is how sensorimotor mu rhythm activity impacts corticospinal output during TMS delivery:


1.     Phase-Dependent Effects: Studies have shown that the phase of the sensorimotor mu rhythm can influence corticospinal excitability. Specifically, corticospinal output is modulated by the phase of the mu rhythm, with increased excitability observed during specific phases of the mu rhythm cycle. For example, corticospinal output tends to be higher during the trough (negative peak) phases of the mu rhythm compared to the peak (positive peak) phases.

2.     Enhancement vs. Suppression: When TMS is delivered to the primary motor cortex (M1) during the trough phases of the mu rhythm, it can lead to enhanced corticospinal transmission and improved motor learning. In contrast, TMS delivered during the peak phases of the mu rhythm may result in weaker corticospinal transmission and have less impact on motor learning. This phase-dependent effect highlights the importance of timing TMS interventions based on the ongoing sensorimotor mu rhythm activity.

3.     Interhemispheric Communication: In addition to influencing corticospinal output, sensorimotor mu rhythm activity also affects interhemispheric communication between homologous motor cortex regions. Studies have demonstrated that the phase synchronicity of the mu rhythm can determine the efficacy of communication between motor cortices, further emphasizing the role of mu rhythm activity in shaping neural interactions.

4.     Complex Interplay: The interplay between sensorimotor mu rhythm phase and power is complex and interdependent in shaping corticospinal tract activity. Both the phase and power of the mu rhythm contribute to modulating corticospinal output, highlighting the need to consider both aspects when utilizing TMS for measurement or interventional purposes.


In conclusion, sensorimotor mu rhythm activity exerts a significant influence on corticospinal output during TMS delivery, with phase-dependent effects playing a crucial role in modulating neural excitability and motor learning processes. Understanding and leveraging the impact of mu rhythm activity can enhance the efficacy of TMS interventions and provide insights into the mechanisms underlying motor control and plasticity in the human brain.

 

 

Hussain, S. J., Claudino, L., Bönstrup, M., Norato, G., Cruciani, G., Thompson, R., ... Cohen, L. G. (2019). Sensorimotor oscillatory phase–power interaction gates resting human corticospinal output. Cerebral Cortex, 29(9), 3766–3777. https://doi.org/10.1093/cercor/bhy255.

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

EEG Amplification

EEG amplification, also known as gain or sensitivity, plays a crucial role in EEG recordings by determining the magnitude of electrical signals detected by the electrodes placed on the scalp. Here is a detailed explanation of EEG amplification: 1. Amplification Settings : EEG machines allow for adjustment of the amplification settings, typically measured in microvolts per millimeter (μV/mm). Common sensitivity settings range from 5 to 10 μV/mm, but a wider range of settings may be used depending on the specific requirements of the EEG recording. 2. High-Amplitude Activity : When high-amplitude signals are present in the EEG, such as during epileptiform discharges or artifacts, it may be necessary to compress the vertical display to visualize the full range of each channel within the available space. This compression helps prevent saturation of the signal and ensures that all amplitude levels are visible. 3. Vertical Compression : Increasing the sensitivity value (e.g., from 10 μV/mm to...

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

What is Quantitative growth of the human brain?

Quantitative growth of the human brain involves the detailed measurement and analysis of various physical and biochemical parameters to understand the developmental changes that occur in the brain over time. Researchers quantify aspects such as brain weight, DNA content, cholesterol levels, water content, and other relevant factors in different regions of the brain at various stages of development, from prenatal to postnatal years.      By quantitatively assessing these parameters, researchers can track the growth trajectories of the human brain, identify critical periods of rapid growth (such as growth spurts), and compare these patterns across different age groups and brain regions. This quantitative approach provides valuable insights into the structural and biochemical changes that underlie brain development, allowing for a better understanding of normal developmental processes and potential deviations from typical growth patterns.      Furthermore,...