Skip to main content

Normal Amplitude + Normal Speed (NANS)

In the context of transcranial magnetic stimulation (TMS) research, "Normal Amplitude + Normal Speed (NANS)" refers to a specific experimental condition or task protocol used to study motor function and cortical excitability. Here is an explanation of NANS in the context of TMS studies:


1.      Definition:

o NANS represents a condition in TMS experiments where participants are instructed to perform a motor task with a standard or typical level of movement (Normal Amplitude) at a regular speed (Normal Speed).

o This condition is designed to establish a baseline or reference point for motor performance and cortical excitability assessments during TMS procedures.

2.     Experimental Design:

oIn TMS studies focusing on motor tasks and MEP measurements, NANS is one of the task conditions used to evaluate the effects of TMS on motor cortex excitability and muscle responses.

oParticipants are asked to perform movements with a normal range of motion or muscle activation (Normal Amplitude) at a pace considered standard or comfortable for the individual (Normal Speed).

3.     Motor Task Parameters:

oNormal Amplitude: Participants are instructed to achieve a standard level of muscle contraction or movement range during the task, ensuring consistency in motor output across trials.

oNormal Speed: The task is performed at a regular speed that is typical for the individual or within a predefined range to maintain uniformity in task execution.

4.    Purpose:

oBaseline Comparison: NANS serves as a control condition for comparing changes in motor performance or cortical excitability under different task conditions or experimental manipulations.

oStandardization: By including NANS in the experimental design, researchers can establish a consistent reference point for assessing the impact of TMS interventions on motor function.

5.     Research Applications:

oCortical Excitability: NANS can help researchers evaluate the baseline level of cortical excitability and motor responses before applying TMS interventions.

oTreatment Effects: Comparing outcomes between NANS and other task conditions allows for the assessment of how TMS influences motor behavior and neural activity.

In summary, Normal Amplitude + Normal Speed (NANS) in TMS research represents a task condition where participants perform movements with a standard level of muscle activation and at a regular speed. By incorporating NANS as a baseline condition, researchers can assess motor function, cortical excitability, and the effects of TMS interventions in a standardized and controlled experimental setting.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Kernelized Support Vector Machines

1. Introduction to SVMs Support Vector Machines (SVMs) are supervised learning algorithms primarily used for classification (and regression with SVR). They aim to find the optimal separating hyperplane that maximizes the margin between classes for linearly separable data. Basic (linear) SVMs operate in the original feature space, producing linear decision boundaries. 2. Limitations of Linear SVMs Linear SVMs have limited flexibility as their decision boundaries are hyperplanes. Many real-world problems require more complex, non-linear decision boundaries that linear SVM cannot provide. 3. Kernel Trick: Overcoming Non-linearity To allow non-linear decision boundaries, SVMs exploit the kernel trick . The kernel trick implicitly maps input data into a higher-dimensional feature space where linear separation might be possible, without explicitly performing the costly mapping . How the Kernel Trick Works: Instead of computing ...

Supervised Learning

What is Supervised Learning? ·     Definition: Supervised learning involves training a model on a labeled dataset, where the input data (features) are paired with the correct output (labels). The model learns to map inputs to outputs and can predict labels for unseen input data. ·     Goal: To learn a function that generalizes well from training data to accurately predict labels for new data. ·          Types: ·          Classification: Predicting categorical labels (e.g., classifying iris flowers into species). ·          Regression: Predicting continuous values (e.g., predicting house prices). Key Concepts: ·     Generalization: The ability of a model to perform well on previously unseen data, not just the training data. ·         Overfitting and Underfitting: ·    ...