Skip to main content

Short Intracortical Inhibitions (SICI)

Short Intracortical Inhibition (SICI) is a neurophysiological phenomenon observed in the context of transcranial magnetic stimulation (TMS) studies, particularly in investigations of cortical excitability and neural circuits. Here is an overview of Short Intracortical Inhibition (SICI):


1.      Definition:

oShort Intracortical Inhibition (SICI) is a specific neurophysiological mechanism characterized by a decrease in cortical excitability in response to a conditioning TMS pulse followed by a test TMS pulse with a short interstimulus interval (ISI) typically ranging from 1 to 5 milliseconds.

2.     Experimental Setup:

oIn TMS studies investigating SICI, two TMS pulses are delivered to the motor cortex: a conditioning pulse followed by a test pulse. The conditioning pulse, usually subthreshold, is applied first, followed by the test pulse, which is supra-threshold. The short ISI between the two pulses is critical for observing the inhibitory effect.

3.     Neuronal Mechanisms:

o SICI is believed to reflect the activity of inhibitory interneurons within the motor cortex. The subthreshold conditioning pulse activates inhibitory circuits, leading to a temporary reduction in cortical excitability that results in a decrease in the amplitude of the motor evoked potential (MEP) elicited by the subsequent test pulse.

4.    Physiological Significance:

oSICI plays a crucial role in modulating motor cortex excitability and fine-tuning motor output. It is involved in the regulation of motor control, movement precision, and the suppression of unwanted muscle activity.

5.     Clinical Applications:

oStudies of SICI have clinical implications in various neurological and neuropsychiatric conditions. Alterations in SICI have been reported in conditions such as stroke, Parkinson's disease, epilepsy, and schizophrenia, providing insights into the underlying pathophysiology of these disorders.

6.    Measurement:

oSICI is typically quantified by comparing the amplitude of MEPs elicited by the test pulse alone versus the test pulse preceded by the conditioning pulse. A reduction in MEP amplitude following the conditioning pulse indicates the presence of SICI.

7.     Research Tools:

oSICI is commonly studied using paired-pulse TMS paradigms, where the interplay between inhibitory and excitatory circuits in the motor cortex can be investigated. Researchers use SICI measurements to assess cortical inhibitory processes and their role in motor function.

In summary, Short Intracortical Inhibition (SICI) is a neurophysiological phenomenon observed in TMS studies, reflecting the inhibitory modulation of cortical excitability through the activation of inhibitory interneurons in the motor cortex. Understanding SICI provides valuable insights into motor control mechanisms, neural circuitry, and the pathophysiology of various neurological conditions.

 

Comments

Popular posts from this blog

Parameters of Interest

In research methodology, parameters of interest refer to the specific characteristics, measures, or variables within a population that researchers aim to study, analyze, or make inferences about. These parameters play a crucial role in shaping the research objectives, study design, data collection methods, and analysis techniques. Here is an explanation of parameters of interest in research: 1.     Definition : o     Parameters of interest are the key aspects of the population that researchers want to investigate or draw conclusions about. These parameters can include means, proportions, variances, correlations, regression coefficients, differences between groups, or any other measurable attributes that are of significance to the research study. 2.     Types of Parameters : o     Parameters of interest can be categorized into various types based on the research objectives and the nature of the study. Common types of parameters include: §   Population Means : Average values of a variabl

Breach Effect compared to Electromyographic Artifacts

When comparing the breach effect to electromyographic (EMG) artifacts in EEG recordings, several key differences can be identified. Breach Effect : o    The breach effect is a phenomenon characterized by changes in brain activity localized to regions near a skull defect or craniotomy site, resulting in increased amplitude, sharper contours, and altered frequencies. o   Breach effects are typically confined to the area directly over the skull defect, with changes in amplitude and frequency limited to specific electrodes near the surgical site. o    The appearance of the breach effect may vary based on the size of the skull defect, underlying cerebral abnormalities, and the presence of abnormal slowing or faster frequencies within the affected region. 2.      Electromyographic (EMG) Artifacts : o   EMG artifacts result from muscle activity and are commonly observed in EEG recordings, particularly in regions overlying muscles such as the frontal and temporal regions. o   EMG artifacts are

What is Brain Stimulation and its applications in research world?

  Brain Stimulation is a field of neuroscience that involves the use of various techniques to modulate brain activity non-invasively. This can include methods such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). These techniques are used to study brain function, investigate neurological disorders, and potentially treat conditions such as depression, chronic pain, and movement disorders. Brain stimulation has shown promise in enhancing cognitive abilities, promoting neuroplasticity, and modulating neural circuits.  Here are some applications of brain stimulation in the research world: 1.      Neuroscientific Research : Brain stimulation techniques are widely used in neuroscience research to investigate brain function, neural circuits, and the underlying mechanisms of various cognitive processes. Researchers can manipulate brain activity in specific regions to study their role in perception, attention, memo

Glial Modulation of Glutamatergic Neurotransmission at Onset of Inflammation

Glial cells play a crucial role in modulating glutamatergic neurotransmission, particularly at the onset of inflammation. Here are key points highlighting the interaction between glial cells and glutamatergic neurotransmission during inflammatory processes: 1.       Glial Regulation of Glutamate Homeostasis : o   Astrocytic Glutamate Uptake : Astrocytes are key players in maintaining extracellular glutamate levels through the uptake of excess glutamate released during synaptic transmission. Glutamate transporters on astrocytes, such as GLT-1 and GLAST, help prevent excitotoxicity by clearing glutamate from the synaptic cleft. o   Glutamine-Glutamate Cycle : Glial cells, particularly astrocytes, participate in the glutamine-glutamate cycle, where glutamate taken up by astrocytes is converted to glutamine-by-glutamine synthetase. Glutamine is then released and taken up by neurons, where it is converted back to glutamate, contributing to neurotransmission. 2.      Inflammatory Response an

Intravenous Drips Artifacts

Intravenous drips artifacts are a type of environmental artifact in EEG recordings that can be caused by the presence of intravenous or other drip infusions near the recording electrodes.  1.      Description : o Source : Intravenous drips artifacts are generated by the moving electrical field of electrostatically charged droplets falling with the drip infusion. o Appearance : These artifacts may manifest as spike-like EEG potentials in the recording, potentially obscuring underlying brain activity. o Identification : The regularity and occurrence of these artifacts in relation to the drips are essential for recognizing them as artifacts. 2.    Characteristics : o Waveform : Intravenous drips artifacts can exhibit triphasic and polyphasic transients that occur simultaneously with the falling of drops in the infusion. o   Amplitude : The artifact is typically low amplitude but can be prominent due to the absence of other EEG activity, especially in cases of electrocerebral inactivity. 3