Skip to main content

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Vertex Sharp Transients compared to IED

Vertex Sharp Transients (VSTs) and Interictal Epileptiform Discharges (IEDs) are both EEG patterns, but they have distinct characteristics that help differentiate them. 

1.      Morphology:

§  VSTs: Typically exhibit a triphasic waveform, consisting of two small positive waves surrounding a larger negative sharp wave. They may also appear as diphasic or monophasic but are most commonly recognized in their triphasic form.

§  IEDs: Generally have a sharper contour and lower amplitude compared to VSTs. IEDs can take various forms, including spikes and spike-and-wave complexes, and they do not typically exhibit the triphasic morphology seen in VSTs.

2.     Localization:

§  VSTs: Primarily recorded from midline electrodes, especially at the vertex (Cz), and show phase reversal at this location. Their distribution is usually confined to the parasagittal regions.

§  IEDs: More commonly found in central or lateral regions of the scalp and can be parasagittal but are not restricted to the midline. They may also show different localization patterns depending on the type of epilepsy.

3.     Clinical Context:

§  VSTs: Generally considered a normal finding during drowsiness and non-REM sleep. They can occur spontaneously or be evoked by sensory stimuli, particularly auditory stimuli.

§  IEDs: Indicative of underlying epileptic activity and are associated with epilepsy. They are typically observed in awake individuals or during sleep but are not considered normal findings in the same way as VSTs.

4.    Amplitude and Background Activity:

§  VSTs: Can vary in amplitude but typically do not exceed the amplitude of the background activity. They maintain a consistent morphology during a train of transients.

§  IEDs: Often stand out against the background activity due to their sharper contour and can exceed the amplitude of the background. They may also show significant evolution in amplitude and frequency during a run of discharges.

5.     Response to Stimulation:

§  VSTs: May be evoked by sensory stimuli, particularly auditory stimuli, and can reflect a mechanism to maintain sleep after stimulation.

§  IEDs: Do not typically respond to sensory stimuli in the same way and are more indicative of a pathological process rather than a normal physiological response.

In summary, Vertex Sharp Transients are generally benign EEG patterns associated with normal sleep, characterized by their triphasic morphology and midline localization. In contrast, Interictal Epileptiform Discharges are indicative of epilepsy, with sharper contours, different localization, and a clinical context that suggests underlying neurological issues. These differences are crucial for accurate EEG interpretation and diagnosis.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...