Skip to main content

Analytical Model: Growing Cortex on growing subcortex

In the analytical model of brain development, the scenario of a growing cortex on a growing subcortex is considered. Here are the key aspects of this analytical model:


1. Model Description: The model involves representing the cortex as a morphogenetically growing outer layer and the subcortex as a strain-driven growing inner core. This dual-layered approach captures the dynamic nature of both layers as they interact and influence the folding patterns of the brain.


2.  Mechanical Interactions: The model accounts for the mechanical interactions between the growing cortex and subcortex, considering how their respective growth rates and properties influence the deformation and folding of the brain tissue. This approach integrates both axonal tension-driven and differential growth-driven hypotheses of cortical folding.


3.  Continuum Theory of Finite Growth: The model is based on the continuum theory of finite growth, which describes the growth and deformation of biological tissues over time. By incorporating growth mechanisms into the model, researchers can simulate the evolving morphology of the brain surface during development.


4.  Parameter Exploration: The model explores the effects of varying parameters such as cortical thickness, stiffness ratios, and growth rates between the cortex and subcortex. By systematically varying these parameters, researchers can analyze how different growth dynamics impact the folding patterns and surface morphologies of the brain.


5. Analytical Estimates: The model provides analytical estimates for critical parameters such as the critical time, pressure, and wavelength at the onset of folding. These estimates offer insights into the conditions under which cortical folding initiates and how the growth dynamics of the cortex and subcortex contribute to this process.


6. Integration with Cellular Mechanisms: The model aims to connect the macroscopic mechanical behavior of the cortex-subcortex system with underlying cellular mechanisms such as axon elongation. By bridging the gap between macroscopic and microscopic scales, researchers can better understand the biological processes driving cortical folding.


In summary, the analytical model of a growing cortex on a growing subcortex offers a comprehensive framework for studying the mechanical and morphological aspects of brain development. By incorporating growth dynamics and mechanical interactions into the model, researchers can simulate the complex folding patterns observed in the developing brain and gain insights into the underlying mechanisms shaping brain morphology.

 

Comments

Popular posts from this blog

Research Process

The research process is a systematic and organized series of steps that researchers follow to investigate a research problem, gather relevant data, analyze information, draw conclusions, and communicate findings. The research process typically involves the following key stages: Identifying the Research Problem : The first step in the research process is to identify a clear and specific research problem or question that the study aims to address. Researchers define the scope, objectives, and significance of the research problem to guide the subsequent stages of the research process. Reviewing Existing Literature : Researchers conduct a comprehensive review of existing literature, studies, and theories related to the research topic to build a theoretical framework and understand the current state of knowledge in the field. Literature review helps researchers identify gaps, trends, controversies, and research oppo...

Mglearn

mglearn is a utility Python library created specifically as a companion. It is designed to simplify the coding experience by providing helper functions for plotting, data loading, and illustrating machine learning concepts. Purpose and Role of mglearn: ·          Illustrative Utility Library: mglearn includes functions that help visualize machine learning algorithms, datasets, and decision boundaries, which are especially useful for educational purposes and building intuition about how algorithms work. ·          Clean Code Examples: By using mglearn, the authors avoid cluttering the book’s example code with repetitive plotting or data preparation details, enabling readers to focus on core concepts without getting bogged down in boilerplate code. ·          Pre-packaged Example Datasets: It provides easy access to interesting datasets used throughout the book f...

Distinguishing Features of Vertex Sharp Transients

Vertex Sharp Transients (VSTs) have several distinguishing features that help differentiate them from other EEG patterns.  1.       Waveform Morphology : §   Triphasic Structure : VSTs typically exhibit a triphasic waveform, consisting of two small positive waves surrounding a larger negative sharp wave. This triphasic pattern is a hallmark of VSTs and is crucial for their identification. §   Diphasic and Monophasic Variants : While triphasic is the most common form, VSTs can also appear as diphasic (two phases) or even monophasic (one phase) waveforms, though these are less typical. 2.      Phase Reversal : §   VSTs demonstrate a phase reversal at the vertex (Cz electrode) and may show phase reversals at adjacent electrodes (C3 and C4). This characteristic helps confirm their midline origin and distinguishes them from other EEG patterns. 3.      Location : §   VSTs are primarily recorded from midl...

Distinguishing Features of K Complexes

  K complexes are specific waveforms observed in electroencephalograms (EEGs) during sleep, particularly in stages 2 and 3 of non-REM sleep. Here are the distinguishing features of K complexes: 1.       Morphology : o     K complexes are characterized by a sharp negative deflection followed by a slower positive wave. This biphasic pattern is a key feature that differentiates K complexes from other EEG waveforms, such as vertex sharp transients (VSTs). 2.      Duration : o     K complexes typically have a longer duration compared to other transient waveforms. They can last for several hundred milliseconds, which helps in distinguishing them from shorter waveforms like VSTs. 3.      Amplitude : o     The amplitude of K complexes is often similar to that of the higher amplitude slow waves present in the background EEG. However, K complexes can stand out due to their ...

Maximum Stimulator Output (MSO)

Maximum Stimulator Output (MSO) refers to the highest intensity level that a transcranial magnetic stimulation (TMS) device can deliver. MSO is an important parameter in TMS procedures as it determines the maximum strength of the magnetic field generated by the TMS coil. Here is an overview of MSO in the context of TMS: 1.   Definition : o   MSO is typically expressed as a percentage of the maximum output capacity of the TMS device. For example, if a TMS device has an MSO of 100%, it means that it is operating at its maximum output level. 2.    Significance : o    Safety : Setting the stimulation intensity below the MSO ensures that the TMS procedure remains within safe limits to prevent adverse effects or discomfort to the individual undergoing the stimulation. o Standardization : Establishing the MSO allows researchers and clinicians to control and report the intensity of TMS stimulation consistently across studies and clinical applications. o   Indi...