Skip to main content

Analytical Model: Growing Cortex on growing subcortex

In the analytical model of brain development, the scenario of a growing cortex on a growing subcortex is considered. Here are the key aspects of this analytical model:


1. Model Description: The model involves representing the cortex as a morphogenetically growing outer layer and the subcortex as a strain-driven growing inner core. This dual-layered approach captures the dynamic nature of both layers as they interact and influence the folding patterns of the brain.


2.  Mechanical Interactions: The model accounts for the mechanical interactions between the growing cortex and subcortex, considering how their respective growth rates and properties influence the deformation and folding of the brain tissue. This approach integrates both axonal tension-driven and differential growth-driven hypotheses of cortical folding.


3.  Continuum Theory of Finite Growth: The model is based on the continuum theory of finite growth, which describes the growth and deformation of biological tissues over time. By incorporating growth mechanisms into the model, researchers can simulate the evolving morphology of the brain surface during development.


4.  Parameter Exploration: The model explores the effects of varying parameters such as cortical thickness, stiffness ratios, and growth rates between the cortex and subcortex. By systematically varying these parameters, researchers can analyze how different growth dynamics impact the folding patterns and surface morphologies of the brain.


5. Analytical Estimates: The model provides analytical estimates for critical parameters such as the critical time, pressure, and wavelength at the onset of folding. These estimates offer insights into the conditions under which cortical folding initiates and how the growth dynamics of the cortex and subcortex contribute to this process.


6. Integration with Cellular Mechanisms: The model aims to connect the macroscopic mechanical behavior of the cortex-subcortex system with underlying cellular mechanisms such as axon elongation. By bridging the gap between macroscopic and microscopic scales, researchers can better understand the biological processes driving cortical folding.


In summary, the analytical model of a growing cortex on a growing subcortex offers a comprehensive framework for studying the mechanical and morphological aspects of brain development. By incorporating growth dynamics and mechanical interactions into the model, researchers can simulate the complex folding patterns observed in the developing brain and gain insights into the underlying mechanisms shaping brain morphology.

 

Comments

Popular posts from this blog

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

How does the 0D closed-loop model of the whole cardiovascular system contribute to the overall accuracy of the simulation?

  The 0D closed-loop model of the whole cardiovascular system plays a crucial role in enhancing the overall accuracy of simulations in the context of biventricular electromechanics. Here are some key ways in which the 0D closed-loop model contributes to the accuracy of the simulation:   1. Comprehensive Representation: The 0D closed-loop model provides a comprehensive representation of the entire cardiovascular system, including systemic circulation, arterial and venous compartments, and interactions between the heart and the vasculature. By capturing the dynamics of blood flow, pressure-volume relationships, and vascular resistances, the model offers a holistic view of circulatory physiology.   2. Integration of Hemodynamics: By integrating hemodynamic considerations into the simulation, the 0D closed-loop model allows for a more realistic representation of the interactions between cardiac mechanics and circulatory dynamics. This integration enables the simulation ...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...