Skip to main content

Analytical Model: Growing Cortex on growing subcortex

In the analytical model of brain development, the scenario of a growing cortex on a growing subcortex is considered. Here are the key aspects of this analytical model:


1. Model Description: The model involves representing the cortex as a morphogenetically growing outer layer and the subcortex as a strain-driven growing inner core. This dual-layered approach captures the dynamic nature of both layers as they interact and influence the folding patterns of the brain.


2.  Mechanical Interactions: The model accounts for the mechanical interactions between the growing cortex and subcortex, considering how their respective growth rates and properties influence the deformation and folding of the brain tissue. This approach integrates both axonal tension-driven and differential growth-driven hypotheses of cortical folding.


3.  Continuum Theory of Finite Growth: The model is based on the continuum theory of finite growth, which describes the growth and deformation of biological tissues over time. By incorporating growth mechanisms into the model, researchers can simulate the evolving morphology of the brain surface during development.


4.  Parameter Exploration: The model explores the effects of varying parameters such as cortical thickness, stiffness ratios, and growth rates between the cortex and subcortex. By systematically varying these parameters, researchers can analyze how different growth dynamics impact the folding patterns and surface morphologies of the brain.


5. Analytical Estimates: The model provides analytical estimates for critical parameters such as the critical time, pressure, and wavelength at the onset of folding. These estimates offer insights into the conditions under which cortical folding initiates and how the growth dynamics of the cortex and subcortex contribute to this process.


6. Integration with Cellular Mechanisms: The model aims to connect the macroscopic mechanical behavior of the cortex-subcortex system with underlying cellular mechanisms such as axon elongation. By bridging the gap between macroscopic and microscopic scales, researchers can better understand the biological processes driving cortical folding.


In summary, the analytical model of a growing cortex on a growing subcortex offers a comprehensive framework for studying the mechanical and morphological aspects of brain development. By incorporating growth dynamics and mechanical interactions into the model, researchers can simulate the complex folding patterns observed in the developing brain and gain insights into the underlying mechanisms shaping brain morphology.

 

Comments

Popular posts from this blog

Review Settings of EEG

The review settings of an EEG recording refer to the parameters that can be adjusted to optimize the visualization and interpretation of electrical brain activity. Here is an overview of the key review settings in EEG analysis: 1.       Amplification (Gain/Sensitivity) : o Definition : Amplification, also known as gain or sensitivity, determines how much the electrical signals from the brain are amplified before being displayed on the EEG recording. o Measurement : Typically measured in microvolts per millimeter (μV/mm). o Impact : Adjusting the amplification setting can affect the visibility of high-amplitude and low-amplitude activity. High-amplitude activity may require vertical compression to fit within the display range, while low-amplitude activity may require lower sensitivity settings for better visualization. 2.      Frequency Filtering : o Bandpass : The frequency range within which EEG signals are analyzed. Common settings include ...

Principle Properties of Research

The principle properties of research encompass key characteristics and fundamental aspects that define the nature, scope, and conduct of research activities. These properties serve as foundational principles that guide researchers in designing, conducting, and interpreting research studies. Here are some principle properties of research: 1.      Systematic Approach: Research is characterized by a systematic and organized approach to inquiry, involving structured steps, procedures, and methodologies. A systematic approach ensures that research activities are conducted in a logical and methodical manner, leading to reliable and valid results. 2.      Rigorous Methodology: Research is based on rigorous methodologies and techniques that adhere to established standards of scientific inquiry. Researchers employ systematic methods for data collection, analysis, and interpretation to ensure the validity and reliability of research findings. 3. ...

Distinguished Features of Cardiac Artifacts

The distinguished features of cardiac artifacts in EEG recordings include characteristics specific to different types of cardiac artifacts, such as ECG artifacts, pacemaker artifacts, and pulse artifacts.  1.      ECG Artifacts : o    Waveform : ECG artifacts typically appear as poorly formed QRS complexes, with the P wave and T wave usually not evident. The QRS complex may be diphasic or monophasic. o     Location : ECG artifacts are often better formed and larger on the left side when using bipolar montages, with clearer QRS waveforms over the temporal regions. o    Regular Intervals : ECG artifacts may exhibit periodic occurrences with intervals that are multiples of a similar time interval, aiding in their identification. o   Conservation of Waveform : ECG artifacts show conservation of waveform and temporal association with the QRS complex in an ECG channel, helping differentiate them from other patterns. 2.  ...

Empirical Research

Empirical research is a type of research methodology that relies on observation, experimentation, or measurement to gather data and test hypotheses or research questions. Empirical research is characterized by its emphasis on collecting and analyzing real-world data to draw conclusions, make predictions, or validate theories based on evidence obtained through direct observation or experience. Key features of empirical research include: 1.      Observation and Measurement : Empirical research involves the systematic observation and measurement of phenomena in the real world. Researchers collect data through direct observation, experiments, surveys, interviews, or other methods to gather empirical evidence that can be analyzed and interpreted. 2.      Data Collection : Empirical research focuses on collecting data that is objective, verifiable, and replicable. Researchers use structured data collection methods to gather information that can be quant...

The differences between bipolar and referential montages in EEG recordings

In EEG recordings, bipolar and referential montages are two common methods used to analyze electrical activity in the brain. Here are the key differences between bipolar and referential montages: 1.       Bipolar Montages : o Definition : In a bipolar montage, the electrical potential difference between two adjacent electrodes is recorded. Each channel represents the voltage between a pair of electrodes. o   Signal Interpretation : Bipolar montages provide information about the spatial relationship and direction of electrical activity between electrode pairs. They are useful for detecting localized abnormalities and assessing the propagation of electrical signals. o Phase Reversal : Bipolar montages exhibit phase reversals when the electrical activity changes direction between the electrode pairs. This reversal helps in localizing the source of abnormal activity. o Sensitivity : Bipolar montages are sensitive to changes in electrical potential between close...