Skip to main content

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Sensitive of surface morphology with respect to Cortical Thickness

The sensitivity of surface morphology with respect to cortical thickness is a critical aspect in understanding the development and folding of the cerebral cortex. Here are some key points regarding the sensitivity of surface morphology to cortical thickness:


1.  Effect on Folding Patterns: The cortical thickness plays a significant role in determining the folding patterns of the cerebral cortex. Changes in cortical thickness can lead to alterations in the depth and complexity of cortical folds, influencing the overall surface morphology of the brain.


2.  Gyral Wavelength: Cortical thickness directly influences the gyral wavelength, which refers to the distance between adjacent cortical folds. Thicker cortices tend to have longer gyral wavelengths, resulting in smoother brain surfaces, while thinner cortices lead to shorter gyral wavelengths and increased cortical folding.


3.  Primary Folding: The primary folding of the cortex, characterized by the formation of gyri and sulci, is highly sensitive to variations in cortical thickness. Thicker cortices are associated with shallower folds, whereas thinner cortices exhibit more pronounced folding patterns.


4. Neurological Disorders: Abnormalities in cortical thickness can impact brain function and are associated with various neurological disorders. For example, conditions like lissencephaly (thickened cortex) and polymicrogyria (regionally thinned cortex) are linked to disruptions in cortical thickness and folding patterns.


5.     Surface-to-Volume Ratio: Changes in cortical thickness can affect the surface-to-volume ratio of the brain. Thicker cortices result in a smaller surface area relative to volume, while thinner cortices increase the surface area-to-volume ratio. These variations have implications for brain function and connectivity.


6.     Mechanical Properties: The mechanical properties of the cortex, such as stiffness and elasticity, interact with cortical thickness to influence surface morphology. Thicker cortices with different mechanical properties may exhibit distinct folding patterns compared to thinner cortices.


7.     Computational Modeling: Computational models can simulate the sensitivity of surface morphology to cortical thickness by varying this parameter and observing the resulting changes in cortical folding patterns. These models provide insights into how cortical thickness influences brain structure and function.


Understanding the sensitivity of surface morphology to cortical thickness is essential for elucidating the mechanisms underlying cortical folding and brain development. By investigating the relationship between cortical thickness and folding patterns, researchers can gain valuable insights into the factors shaping the complex structure of the cerebral cortex and their implications for brain function and pathology.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Kernelized Support Vector Machines

1. Introduction to SVMs Support Vector Machines (SVMs) are supervised learning algorithms primarily used for classification (and regression with SVR). They aim to find the optimal separating hyperplane that maximizes the margin between classes for linearly separable data. Basic (linear) SVMs operate in the original feature space, producing linear decision boundaries. 2. Limitations of Linear SVMs Linear SVMs have limited flexibility as their decision boundaries are hyperplanes. Many real-world problems require more complex, non-linear decision boundaries that linear SVM cannot provide. 3. Kernel Trick: Overcoming Non-linearity To allow non-linear decision boundaries, SVMs exploit the kernel trick . The kernel trick implicitly maps input data into a higher-dimensional feature space where linear separation might be possible, without explicitly performing the costly mapping . How the Kernel Trick Works: Instead of computing ...

Supervised Learning

What is Supervised Learning? ·     Definition: Supervised learning involves training a model on a labeled dataset, where the input data (features) are paired with the correct output (labels). The model learns to map inputs to outputs and can predict labels for unseen input data. ·     Goal: To learn a function that generalizes well from training data to accurately predict labels for new data. ·          Types: ·          Classification: Predicting categorical labels (e.g., classifying iris flowers into species). ·          Regression: Predicting continuous values (e.g., predicting house prices). Key Concepts: ·     Generalization: The ability of a model to perform well on previously unseen data, not just the training data. ·         Overfitting and Underfitting: ·    ...