Skip to main content

Neuronal Division and Migration

Neuronal division and migration are critical processes in neurodevelopment that contribute to the formation of the complex structure of the human brain. Here is an explanation of neuronal division and migration:


1.     Neurogenesis: Neurogenesis is the process by which neurons are generated from neural stem cells. It involves a precisely orchestrated sequence of cellular events that begin with the formation of the neocortex at the rostral end of the neural tube during embryonic development. In humans, the neural tube closes around the fifth week of gestation, marking the initiation of rapid brain enlargement.


2.     Cellular Events: During neurogenesis, neural stem cells divide and differentiate into neurons through asymmetric and symmetric cell divisions. Asymmetric cell divisions produce one stem cell and one progenitor cell or neuron, while symmetric divisions generate two identical daughter cells. These divisions lead to a notable radial and tangential expansion of proliferative zones in the developing brain.


3.     Neuronal Migration: After being generated, neurons undergo migration to their final destinations within the brain. Radial migration is a process where neurons move from the ventricular zone to the outer layers of the cortex along radial glial fibers. This process is crucial for establishing the layered structure of the cerebral cortex. Tangential migration involves the movement of neurons parallel to the brain's surface and contributes to the diversification of neuronal types and the formation of neural circuits.


4.     Subventricular Zone: The subventricular zone plays a key role in coordinating the migration of pyramidal neurons and interneurons during brain development. Neurons pause in the subventricular zone before migrating radially, suggesting a synchronization mechanism for neuronal migration. Early-born cells in the preplate, a transient structure near the basal surface, will either migrate tangentially to become inhibitory interneurons or die during early neurogenesis.


5.     Intracranial Pressure: Intracranial pressure, regulated by the ventricular system and cerebrospinal fluid dynamics, is recognized as an important regulator of normal brain development. Changes in intracranial pressure can impact brain enlargement, tissue organization, and folding patterns during neurodevelopment.

In summary, neuronal division and migration are fundamental processes in neurodevelopment that shape the structure and connectivity of the human brain. Understanding the mechanisms underlying these processes is essential for unraveling the complexities of brain development and the pathogenesis of neurological disorders.
 

Comments

Popular posts from this blog

Distinguishing Features of Alpha Activity

Alpha activity in EEG recordings has distinguishing features that differentiate it from other brain wave patterns.  1.      Frequency Range : o   Alpha activity typically occurs in the frequency range of 8 to 13 Hz. o   The alpha rhythm is most prominent in the posterior head regions during relaxed wakefulness with eyes closed. 2.    Location : o   Alpha activity is often observed over the occipital regions of the brain, known as the occipital alpha rhythm or posterior dominant rhythm. o   In drowsiness, the alpha rhythm may extend anteriorly to include the frontal region bilaterally. 3.    Modulation : o   The alpha rhythm can attenuate or disappear with drowsiness, concentration, stimulation, or visual fixation. o   Abrupt loss of the alpha rhythm due to visual or cognitive activity is termed blocking. 4.    Behavioral State : o   The presence of alpha activity is associated with a state of relax...

Human Connectome Project

The Human Connectome Project (HCP) is a large-scale research initiative that aims to map the structural and functional connectivity of the human brain. Launched in 2009, the HCP utilizes advanced neuroimaging techniques to create detailed maps of the brain's neural pathways and networks in healthy individuals. The project focuses on understanding how different regions of the brain communicate and interact with each other, providing valuable insights into brain function and organization. 1.      Structural Connectivity : The HCP uses diffusion MRI to map the white matter pathways in the brain, revealing the structural connections between different brain regions. This information helps researchers understand the physical wiring of the brain and how information is transmitted between regions. 2.      Functional Connectivity : Functional MRI (fMRI) is employed to study the patterns of brain activity and connectivity while individuals are at rest (...

The expression of Notch-related genes in the differentiation of BMSCs into dopaminergic neuron-like cells.

  The expression of Notch-related genes plays a crucial role in the differentiation of human bone marrow mesenchymal stem cells (h-BMSCs) into dopaminergic neuron-like cells. The Notch signaling pathway is involved in regulating cell fate decisions, including the differentiation of BMSCs. In the study discussed in the PDF file, changes in the expression of Notch-related genes were observed during the differentiation process. Specifically, the study utilized a human Notch signaling pathway PCR array to detect the expression levels of 84 genes related to the Notch signaling pathway, including ligands, receptors, target genes, cell proliferation and differentiation-related genes, and neurogenesis-related genes. The array also included genes from other signaling pathways that intersect with the Notch pathway, such as Sonic hedgehog and Wnt receptor signaling pathway members. During the differentiation of h-BMSCs into dopaminergic neuron-like cells, the expression levels of Notch-re...

Clinical Significance of Hypnopompic, Hypnagogic, and Hedonic Hypersynchron

Hypnopompic, hypnagogic, and hedonic hypersynchrony are normal pediatric phenomena with no significant clinical relevance. These types of hypersynchrony are considered variations in brain activity that occur during specific states such as arousal from sleep (hypnopompic), transition from wakefulness to sleep (hypnagogic), or pleasurable activities (hedonic). While these patterns may be observed on an EEG, they are not indicative of any underlying pathology or neurological disorder. Therefore, the presence or absence of hypnopompic, hypnagogic, and hedonic hypersynchrony does not carry any specific clinical implications. It is important to differentiate these normal variations in brain activity from abnormal patterns that may be associated with neurological conditions, such as epileptiform discharges or other pathological findings. Understanding the clinical significance of these normal phenomena helps in accurate EEG interpretation and clinical decision-making.  

Different measures of neuronal morphology change independently of each other and sometimes in opposite directions.

Different measures of neuronal morphology can change independently of each other and occasionally in opposite directions, highlighting the complexity of structural adaptations in the brain. Here are some key points regarding the independent changes in neuronal morphology: 1.      Spine Density vs. Dendritic Length : Spine density, which reflects the number of dendritic spines (small protrusions on dendrites where synapses form), and dendritic length, which indicates the extent of dendritic branching, are two distinct measures of neuronal morphology. Studies have shown that changes in spine density and dendritic length can occur independently in response to various experiences. 2.      Independent Responses to Experiences : Neurons in different cortical layers or regions may exhibit unique responses to environmental stimuli or learning tasks. For example, experiences that promote dendritic growth in one brain region may not necessarily lead to chan...