Skip to main content

Development of Prefrontal Cortex: Regions of PFC


The prefrontal cortex (PFC) is a critical brain region associated with higher-order cognitive functions, including executive function, decision-making, social behavior, and emotional regulation. The PFC undergoes significant development across the lifespan, with distinct regions contributing to various aspects of cognitive control and behavior. Here are the key regions of the prefrontal cortex and their functions:

1.     Orbitofrontal Cortex (BA 11):

o    Location: Located in the ventromedial part of the PFC.

o  Function: The orbitofrontal cortex is involved in decision-making, reward processing, emotional regulation, and social behavior. It plays a role in evaluating the emotional and motivational significance of stimuli and guiding adaptive behavior based on reward outcomes.

2.     Ventrolateral PFC (BA 44, 45, 47):

o    Location: Situated in the lower lateral aspects of the PFC.

o Function: The ventrolateral PFC is associated with cognitive control, working memory, language processing, and response inhibition. It plays a role in maintaining task-relevant information, manipulating information, and regulating attention during complex cognitive tasks.

3.     Dorsolateral PFC (BA 9, 46):

o    Location: Located in the upper lateral aspects of the PFC.

o   Function: The dorsolateral PFC is involved in executive functions such as planning, problem-solving, cognitive flexibility, and goal-directed behavior. It plays a crucial role in working memory, mental manipulation of information, and strategic decision-making.

4.     Rostrolateral PFC (BA 10):

o    Location: Situated in the rostral part of the lateral PFC.

o Function: The rostrolateral PFC is associated with cognitive control, attentional processes, and multitasking. It plays a role in monitoring and coordinating complex cognitive operations, integrating information from multiple sources, and maintaining task sets for goal-directed behavior.

These regions of the prefrontal cortex work in concert to support various aspects of executive function and cognitive control. The hierarchical organization of the PFC allows for the integration of information, the regulation of behavior, and the coordination of complex cognitive processes. Understanding the functions of different regions within the prefrontal cortex provides insights into the neural basis of higher cognitive functions and the role of the PFC in adaptive behavior and decision-making processes.

 

Comments

Popular posts from this blog

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

How does the 0D closed-loop model of the whole cardiovascular system contribute to the overall accuracy of the simulation?

  The 0D closed-loop model of the whole cardiovascular system plays a crucial role in enhancing the overall accuracy of simulations in the context of biventricular electromechanics. Here are some key ways in which the 0D closed-loop model contributes to the accuracy of the simulation:   1. Comprehensive Representation: The 0D closed-loop model provides a comprehensive representation of the entire cardiovascular system, including systemic circulation, arterial and venous compartments, and interactions between the heart and the vasculature. By capturing the dynamics of blood flow, pressure-volume relationships, and vascular resistances, the model offers a holistic view of circulatory physiology.   2. Integration of Hemodynamics: By integrating hemodynamic considerations into the simulation, the 0D closed-loop model allows for a more realistic representation of the interactions between cardiac mechanics and circulatory dynamics. This integration enables the simulation ...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...