Skip to main content

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Different types of Simple Random Sampling

Simple random sampling is a fundamental sampling technique where each element in the population has an equal probability of being selected for the sample. It is considered one of the most straightforward and unbiased sampling methods. Here are some different types of simple random sampling techniques:


1.    Lottery Method:

§  In the lottery method, each element in the population is assigned a unique number, and a random selection process (e.g., drawing numbers from a hat or using a random number generator) is used to choose the sample. This method ensures that every element has an equal chance of being selected.

2.    Random Number Table:

§  Researchers can use random number tables to select a sample from a population. In this method, each element is assigned a number, and random numbers from the table are used to choose the sample. By following a systematic pattern in the random number table, researchers can ensure randomness in the selection process.

3.    Random Sampling Software:

§  With advancements in technology, researchers can use random sampling software or computer programs to generate random samples from a population. These software tools use algorithms to ensure randomness and eliminate human bias in the selection process. Researchers can input the population data and specify the sample size to obtain a simple random sample.

4.    Simple Random Sampling Without Replacement:

§  In simple random sampling without replacement, once an element is selected for the sample, it is not returned to the population. This ensures that each element is selected only once in the sample, maintaining the randomness of the selection process. This method is commonly used in research studies to avoid duplication of elements in the sample.

5.    Table of Random Digits:

§  A table of random digits is a tool used in simple random sampling to select elements from a population. Researchers can start at a random point in the table and follow a predetermined pattern to choose sample elements. By using a table of random digits, researchers can achieve randomness and avoid bias in the selection process.

6.    Physical Randomization:

§  Physical randomization techniques involve physically mixing or shuffling elements in the population to ensure randomness in sample selection. For example, placing numbered balls in a container and drawing them one by one can be a form of physical randomization to select a sample. This method is simple and transparent, ensuring fairness in the selection process.

Simple random sampling techniques provide researchers with a straightforward and unbiased way to select samples from populations. By employing different methods such as the lottery method, random number tables, and random sampling software, researchers can ensure that each element in the population has an equal chance of being included in the sample, leading to representative and reliable research outcomes.

 


Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Uncertainty Estimates from Classifiers

1. Overview of Uncertainty Estimates Many classifiers do more than just output a predicted class label; they also provide a measure of confidence or uncertainty in their predictions. These uncertainty estimates help understand how sure the model is about its decision , which is crucial in real-world applications where different types of errors have different consequences (e.g., medical diagnosis). 2. Why Uncertainty Matters Predictions are often thresholded to produce class labels, but this process discards the underlying probability or decision value. Knowing how confident a classifier is can: Improve decision-making by allowing deferral in uncertain cases. Aid in calibrating models. Help in evaluating the risk associated with predictions. Example: In medical testing, a false negative (missing a disease) can be worse than a false positive (extra test). 3. Methods to Obtain Uncertainty from Classifiers 3.1 ...