Skip to main content

Functions Of APC/C-CDH1 In Postmitotic Neurons

The Anaphase Promoting Complex/Cyclosome-Cdh1 (APC/C-Cdh1) is a multiprotein complex known for its role in cell cycle regulation, specifically in targeting cell cycle proteins for degradation during mitosis. However, recent studies have revealed novel functions of APC/C-Cdh1 in postmitotic neurons. Here are some key points regarding the functions of APC/C-Cdh1 in postmitotic neurons:


1.      Neuronal Survival:

o Cyclin B1 Degradation: In postmitotic neurons, APC/C-Cdh1 promotes the continuous degradation of cyclin B1, a key cell cycle regulator. By targeting cyclin B1 for proteasomal degradation, APC/C-Cdh1 prevents its nuclear accumulation and inhibits cell cycle re-entry, thereby promoting neuronal survival.

o Apoptosis Regulation: Dysregulation of APC/C-Cdh1-mediated cyclin B1 degradation in postmitotic neurons can lead to aberrant cell cycle activation and apoptosis. Maintaining proper APC/C-Cdh1 activity is crucial for preventing neuronal cell death and ensuring long-term neuronal survival.

2.     Axonal Growth and Synaptogenesis:

o    Regulation of Developmental Processes: APC/C-Cdh1 has been implicated in regulating axonal growth and synaptogenesis in postmitotic neurons. By controlling the degradation of specific proteins involved in neuronal development, APC/C-Cdh1 influences the structural and functional maturation of neurons.

o Synaptic Connectivity: Proper functioning of APC/C-Cdh1 is essential for establishing and maintaining synaptic connectivity in the brain. Disruption of APC/C-Cdh1 activity can impact synaptic plasticity and neuronal network formation, potentially leading to cognitive deficits.

3.     Glucidic Metabolism:

o Metabolic Regulation: APC/C-Cdh1 has been linked to the regulation of glucidic (carbohydrate) metabolism in postmitotic neurons. By modulating the stability of metabolic enzymes or regulators, APC/C-Cdh1 may influence energy production and utilization in neurons, thereby impacting neuronal function and viability.

o    Metabolic Homeostasis: Maintaining metabolic homeostasis is crucial for neuronal health and function. APC/C-Cdh1-mediated control of glucidic metabolism pathways in postmitotic neurons highlights the diverse roles of this complex beyond cell cycle regulation.

4.    In Vivo Studies:

o Mouse Models: Studies using specific neuronal knockout mouse models for Cdh1 have demonstrated the importance of APC/C-Cdh1 in neuronal survival in vivo. Depletion of Cdh1 in the brain leads to selective neuronal loss, emphasizing the essential role of APC/C-Cdh1 in maintaining neuronal integrity and function.

o Layer-Specific Effects: Cdh1 depletion in the cerebral cortex results in a time-dependent shortening of specific cortical layers, indicating a progressive loss of neurons. These in vivo findings underscore the significance of APC/C-Cdh1 in preserving neuronal populations and cortical architecture.

In conclusion, APC/C-Cdh1 plays critical roles in postmitotic neurons beyond its canonical function in cell cycle regulation. By influencing neuronal survival, axonal growth, synaptogenesis, and metabolic processes, APC/C-Cdh1 contributes to the maintenance of neuronal integrity and function. Understanding the diverse functions of APC/C-Cdh1 in postmitotic neurons provides insights into the molecular mechanisms underlying neuronal development, connectivity, and metabolic homeostasis, with implications for neurodegenerative disorders and cognitive function.

 

Comments

Popular posts from this blog

What are the type of research?

Research can be classified into various types based on different criteria, including the purpose of the study, the nature of the research question, the methodology employed, and the scope of the investigation. Here are some common types of research: 1.      Basic Research: Also known as pure or fundamental research, basic research aims to expand knowledge and understanding of fundamental principles and concepts without any immediate practical application. It focuses on theoretical exploration and the advancement of scientific knowledge. 2.      Applied Research: Applied research is conducted to address specific practical problems, issues, or challenges and to generate solutions or interventions with direct relevance to real-world applications. It aims to solve practical problems and improve existing practices or processes. 3.      Quantitative Research: Quantitative research involves the collection and analysis of numerical data to quantify relationships, patterns, and trends.

How does the fourfold increase in the volume of the human brain from birth to teenage years impact motor, cognitive, and perceptual abilities?

The fourfold increase in the volume of the human brain from birth to teenage years has significant impacts on motor, cognitive, and perceptual abilities. Here is an explanation based on the some information:  1.      Motor Abilities: The increase in brain volume during this period is associated with the development of motor skills. As the brain grows and matures, it establishes and refines neural connections that are crucial for controlling movement and coordination. This growth allows for the enhancement of motor abilities, leading to improvements in physical skills such as walking, running, grasping objects, and other complex movements. The maturation of motor areas in the brain enables individuals to perform more intricate and coordinated movements as they progress from infancy to adolescence. 2.      Cognitive Abilities: The expansion of the brain volume also plays a vital role in the development of cognitive func

How do pharmacological interventions targeting NMDA glutamate receptors and PKCc affect alcohol drinking behavior in mice?

Pharmacological interventions targeting NMDA glutamate receptors and PKCc can have significant effects on alcohol drinking behavior in mice. In the context of the study discussed in the PDF file, the researchers investigated the impact of these interventions on ethanol-preferring behavior in mice lacking type 1 equilibrative nucleoside transporter (ENT1). 1.   NMDA Glutamate Receptor Inhibition : Inhibition of NMDA glutamate receptors can reduce ethanol drinking behavior in mice. This suggests that NMDA receptor-mediated signaling plays a role in regulating alcohol consumption. By blocking NMDA receptors, the researchers were able to observe a decrease in ethanol intake in ENT1 null mice, indicating that NMDA receptor activity is involved in the modulation of alcohol preference. 2.   PKCc Inhibition : Down-regulation of intracellular PKCc-neurogranin (Ng)-Ca2+-calmodulin dependent protein kinase type II (CaMKII) signaling through PKCc inhibition is correlated with reduced CREB activity

How Does RP Blindness Affect Functional Connectivity to V1 at Rest?

  RP (Retinitis Pigmentosa) blindness can affect functional connectivity to V1 (primary visual cortex) at rest. Studies have shown that individuals with RP experience alterations in the functional connectivity patterns of the visual cortex, particularly V1, due to the progressive degeneration of retinal cells and the loss of visual input. Here is a summary of how RP blindness affects functional connectivity to V1 at rest based on the provided information:   1. Impact on Functional Connectivity: RP blindness is associated with changes in the functional connectivity of V1 at rest. Functional connectivity refers to the synchronized activity between different brain regions, reflecting the strength of neural communication and network organization. In individuals with RP, the connectivity patterns involving V1 may be altered compared to sighted individuals, indicating disruptions in the neural circuits associated with visual processing. 2. Altered Connectivity Patterns: Resting-state

Distinguishing features of Wickets Rhythms

The wicket rhythm pattern in EEG recordings has several distinguishing features that differentiate it from other EEG patterns.  1.      Waveform : o   The wicket rhythm is characterized by a unique waveform consisting of monophasic waves with alternating sharply contoured and rounded phases, giving it an arciform appearance. o    This waveform includes negative sharp components followed by positive rounded components, similar to the mu rhythm but with distinct features. 2.    Frequency : o The wicket rhythm typically occurs within the alpha frequency range, although it may occasionally manifest in the theta frequency range. o Unlike some focal seizures and subclinical rhythmic electrographic discharges of adults, the wicket rhythm lacks evolution in frequency, waveform, or distribution during its occurrence. 3.    Location : o   Wicket rhythms are often maximal over the anterior or mid-temporal regions and may exhibit unilateral occurrence with shifting asymmetry that maintains bilater