Skip to main content

Stratified Sampling

Stratified sampling is a sampling technique in which the population is divided into subgroups or strata based on certain characteristics that are relevant to the research objectives. Samples are then randomly selected from each stratum to ensure representation of the diversity within the population. Here are some key points about stratified sampling:

1.    Process:

o    In stratified sampling, the population is first divided into mutually exclusive and homogeneous subgroups called strata. These strata are based on specific characteristics such as age, gender, income level, or geographic location.

o    Random samples are then drawn from each stratum in proportion to the population size of the stratum. This ensures that each stratum is adequately represented in the final sample.

2.    Purpose:

o    The primary purpose of using stratified sampling is to ensure that all subgroups within the population are represented in the sample. By dividing the population into strata, researchers can capture the variability within different segments of the population and obtain more precise estimates for each subgroup.

3.    Advantages:

o    Provides more accurate and reliable estimates for each stratum by ensuring adequate representation.

o    Allows for comparisons between different subgroups within the population.

o    Helps in reducing sampling variability and increasing the efficiency of the sampling process.

4.    Disadvantages:

o    Requires prior knowledge of the population characteristics to define appropriate strata.

o    Can be more complex and time-consuming compared to simple random sampling or other sampling methods.

o    If the population characteristics change over time, the defined strata may become outdated and lead to biased results.

5.    Types:

o    There are two main types of stratified sampling:

§  Proportional stratified sampling: Where the sample size from each stratum is proportional to the population size of that stratum.

§  Disproportional (or quota) stratified sampling: Where the sample size from each stratum is not proportional to the population size, but rather based on specific research considerations.

6.    Applications:

o    Stratified sampling is commonly used in market research, opinion polls, social sciences, and medical research. It is particularly useful when the population exhibits significant diversity or when researchers want to ensure representation from different subgroups.

7.    Considerations:

o    When using stratified sampling, researchers should carefully define the strata based on relevant characteristics and ensure that the sampling process within each stratum is random. It is important to maintain the independence of samples from different strata to avoid bias.

Stratified sampling is a valuable sampling technique that allows researchers to obtain more accurate and detailed insights by considering the diversity within the population. By stratifying the population based on relevant characteristics and sampling from each stratum, researchers can enhance the precision and reliability of their study results.

 

Comments

Popular posts from this blog

What are the type of research?

Research can be classified into various types based on different criteria, including the purpose of the study, the nature of the research question, the methodology employed, and the scope of the investigation. Here are some common types of research: 1.      Basic Research: Also known as pure or fundamental research, basic research aims to expand knowledge and understanding of fundamental principles and concepts without any immediate practical application. It focuses on theoretical exploration and the advancement of scientific knowledge. 2.      Applied Research: Applied research is conducted to address specific practical problems, issues, or challenges and to generate solutions or interventions with direct relevance to real-world applications. It aims to solve practical problems and improve existing practices or processes. 3.      Quantitative Research: Quantitative research involves the collection and analysis of numerical data to quantify relationships, patterns, and trends.

How does the fourfold increase in the volume of the human brain from birth to teenage years impact motor, cognitive, and perceptual abilities?

The fourfold increase in the volume of the human brain from birth to teenage years has significant impacts on motor, cognitive, and perceptual abilities. Here is an explanation based on the some information:  1.      Motor Abilities: The increase in brain volume during this period is associated with the development of motor skills. As the brain grows and matures, it establishes and refines neural connections that are crucial for controlling movement and coordination. This growth allows for the enhancement of motor abilities, leading to improvements in physical skills such as walking, running, grasping objects, and other complex movements. The maturation of motor areas in the brain enables individuals to perform more intricate and coordinated movements as they progress from infancy to adolescence. 2.      Cognitive Abilities: The expansion of the brain volume also plays a vital role in the development of cognitive func

How do pharmacological interventions targeting NMDA glutamate receptors and PKCc affect alcohol drinking behavior in mice?

Pharmacological interventions targeting NMDA glutamate receptors and PKCc can have significant effects on alcohol drinking behavior in mice. In the context of the study discussed in the PDF file, the researchers investigated the impact of these interventions on ethanol-preferring behavior in mice lacking type 1 equilibrative nucleoside transporter (ENT1). 1.   NMDA Glutamate Receptor Inhibition : Inhibition of NMDA glutamate receptors can reduce ethanol drinking behavior in mice. This suggests that NMDA receptor-mediated signaling plays a role in regulating alcohol consumption. By blocking NMDA receptors, the researchers were able to observe a decrease in ethanol intake in ENT1 null mice, indicating that NMDA receptor activity is involved in the modulation of alcohol preference. 2.   PKCc Inhibition : Down-regulation of intracellular PKCc-neurogranin (Ng)-Ca2+-calmodulin dependent protein kinase type II (CaMKII) signaling through PKCc inhibition is correlated with reduced CREB activity

How Does RP Blindness Affect Functional Connectivity to V1 at Rest?

  RP (Retinitis Pigmentosa) blindness can affect functional connectivity to V1 (primary visual cortex) at rest. Studies have shown that individuals with RP experience alterations in the functional connectivity patterns of the visual cortex, particularly V1, due to the progressive degeneration of retinal cells and the loss of visual input. Here is a summary of how RP blindness affects functional connectivity to V1 at rest based on the provided information:   1. Impact on Functional Connectivity: RP blindness is associated with changes in the functional connectivity of V1 at rest. Functional connectivity refers to the synchronized activity between different brain regions, reflecting the strength of neural communication and network organization. In individuals with RP, the connectivity patterns involving V1 may be altered compared to sighted individuals, indicating disruptions in the neural circuits associated with visual processing. 2. Altered Connectivity Patterns: Resting-state

Distinguishing features of Wickets Rhythms

The wicket rhythm pattern in EEG recordings has several distinguishing features that differentiate it from other EEG patterns.  1.      Waveform : o   The wicket rhythm is characterized by a unique waveform consisting of monophasic waves with alternating sharply contoured and rounded phases, giving it an arciform appearance. o    This waveform includes negative sharp components followed by positive rounded components, similar to the mu rhythm but with distinct features. 2.    Frequency : o The wicket rhythm typically occurs within the alpha frequency range, although it may occasionally manifest in the theta frequency range. o Unlike some focal seizures and subclinical rhythmic electrographic discharges of adults, the wicket rhythm lacks evolution in frequency, waveform, or distribution during its occurrence. 3.    Location : o   Wicket rhythms are often maximal over the anterior or mid-temporal regions and may exhibit unilateral occurrence with shifting asymmetry that maintains bilater