Skip to main content

The Polysialylation Of NCAM

Polysialylation of NCAM refers to the post-translational modification of the Neural Cell Adhesion Molecule (NCAM) with polysialic acid chains. Here is an overview of polysialylation of NCAM:

1.      Polysialic Acid (PSA):

o  Polysialic acid is a linear homopolymer of α-2,8-linked sialic acid residues.

o    PSA is a large, negatively charged carbohydrate polymer that can be attached to glycoproteins, with NCAM being one of the major carriers of polysialic acid in the nervous system.

2.     Function of Polysialylation:

o    Regulation of Cell Adhesion: Polysialylation of NCAM reduces its adhesive properties, leading to decreased cell-cell adhesion and increased cell motility.

o Neuronal Plasticity: Polysialylation of NCAM is involved in modulating neuronal plasticity, axon guidance, and synaptic remodeling during development and in response to environmental cues.

o    Neurite Outgrowth: PSA-NCAM promotes neurite outgrowth by reducing cell adhesion, allowing for increased exploratory behavior of growth cones and facilitating axon pathfinding.

3.     Developmental Role:

o Neural Development: Polysialylation of NCAM is particularly important during neural development, where it regulates processes such as neuronal migration, axon guidance, and synaptogenesis.

o    Plasticity and Learning: The dynamic regulation of polysialylation of NCAM is associated with synaptic plasticity, learning, and memory formation in the brain.

4.    Regulation of Polysialylation:

o    Enzymatic Modification: Polysialylation of NCAM is catalyzed by two polysialyltransferases, ST8SiaII and ST8SiaIV, which add polysialic acid chains to specific sites on NCAM.

o Developmental Regulation: The expression and activity of polysialyltransferases are tightly regulated during development and can be influenced by various extracellular signals and neuronal activity.

5.     Functional Implications:

o  Disease Associations: Dysregulation of polysialylation of NCAM has been implicated in neurodevelopmental disorders, neurodegenerative diseases, and psychiatric conditions.

o  Therapeutic Potential: Modulation of polysialylation of NCAM represents a potential therapeutic target for promoting neural regeneration, enhancing synaptic plasticity, and treating neurological disorders.

In summary, polysialylation of NCAM plays a critical role in regulating cell adhesion, neuronal plasticity, and neural development by modulating the adhesive properties of NCAM and influencing processes such as neurite outgrowth, axon guidance, and synaptic remodeling. The dynamic regulation of polysialylation of NCAM contributes to the functional diversity of NCAM in the nervous system and its involvement in various physiological and pathological conditions.

 

Comments

Popular posts from this blog

How do pharmacological interventions targeting NMDA glutamate receptors and PKCc affect alcohol drinking behavior in mice?

Pharmacological interventions targeting NMDA glutamate receptors and PKCc can have significant effects on alcohol drinking behavior in mice. In the context of the study discussed in the PDF file, the researchers investigated the impact of these interventions on ethanol-preferring behavior in mice lacking type 1 equilibrative nucleoside transporter (ENT1). 1.   NMDA Glutamate Receptor Inhibition : Inhibition of NMDA glutamate receptors can reduce ethanol drinking behavior in mice. This suggests that NMDA receptor-mediated signaling plays a role in regulating alcohol consumption. By blocking NMDA receptors, the researchers were able to observe a decrease in ethanol intake in ENT1 null mice, indicating that NMDA receptor activity is involved in the modulation of alcohol preference. 2.   PKCc Inhibition : Down-regulation of intracellular PKCc-neurogranin (Ng)-Ca2+-calmodulin dependent protein kinase type II (CaMKII) signaling through PKCc inhibition is correlated with reduced CREB activity

Distinguishing features of Wickets Rhythms

The wicket rhythm pattern in EEG recordings has several distinguishing features that differentiate it from other EEG patterns.  1.      Waveform : o   The wicket rhythm is characterized by a unique waveform consisting of monophasic waves with alternating sharply contoured and rounded phases, giving it an arciform appearance. o    This waveform includes negative sharp components followed by positive rounded components, similar to the mu rhythm but with distinct features. 2.    Frequency : o The wicket rhythm typically occurs within the alpha frequency range, although it may occasionally manifest in the theta frequency range. o Unlike some focal seizures and subclinical rhythmic electrographic discharges of adults, the wicket rhythm lacks evolution in frequency, waveform, or distribution during its occurrence. 3.    Location : o   Wicket rhythms are often maximal over the anterior or mid-temporal regions and may exhibit unilateral occurrence with shifting asymmetry that maintains bilater

Complex Random Sampling Designs

Complex random sampling designs refer to sampling methods that involve a combination of various random sampling techniques to select a sample from a population. These designs often incorporate elements of both probability and non-probability sampling methods to achieve specific research objectives. Here are some key points about complex random sampling designs: 1.     Definition : o     Complex random sampling designs involve the use of multiple random sampling methods, such as systematic sampling, stratified sampling, cluster sampling, etc., in a structured manner to select a sample from a population. o     These designs aim to improve the representativeness, efficiency, and precision of the sample by combining different random sampling techniques. 2.     Purpose : o    The primary goal of complex random sampling designs is to enhance the quality of the sample by addressing specific characteristics or requirements of the population. o     Researchers may use these designs to increase

How the Neural network circuits works in Parkinson's Disease?

  In Parkinson's disease, the neural network circuits involved in motor control are disrupted, leading to characteristic motor symptoms such as tremor, bradykinesia, and rigidity. The primary brain regions affected in Parkinson's disease include the basal ganglia and the cortex. Here is an overview of how neural network circuits work in Parkinson's disease: 1.      Basal Ganglia Dysfunction: The basal ganglia are a group of subcortical nuclei involved in motor control. In Parkinson's disease, there is a loss of dopamine-producing neurons in the substantia nigra, leading to decreased dopamine levels in the basal ganglia. This dopamine depletion results in abnormal signaling within the basal ganglia circuitry, leading to motor symptoms. 2.      Cortical Involvement: The cortex, particularly the motor cortex, plays a crucial role in initiating and coordinating voluntary movements. In Parkinson's disease, abnormal activity in the cortex, especially in the beta and gamma

How do genetic, environmental, biochemical, and physical events interact to influence neurodevelopment?

Genetic, environmental, biochemical, and physical events interact in a complex manner to influence neurodevelopment. Here is an explanation of how each of these factors plays a role: 1.      Genetic Factors: Genetic factors provide the blueprint for neurodevelopment by determining the initial structure and function of the brain. Genes regulate processes such as neuronal differentiation, migration, and connectivity, which are essential for the formation of neural circuits. Variations in genes can impact the development of the brain and contribute to neurodevelopmental disorders. 2.      Environmental Factors: Environmental factors, including prenatal and postnatal experiences, exposure to toxins, nutrition, and social interactions, can significantly influence neurodevelopment. Environmental stimuli can shape neuronal connections, synaptic plasticity, and brain structure. Adverse environmental conditions, such as stress or malnutrition, can disrupt normal neurodevelopment and lead to c