Skip to main content

The Polysialylation Of NCAM

Polysialylation of NCAM refers to the post-translational modification of the Neural Cell Adhesion Molecule (NCAM) with polysialic acid chains. Here is an overview of polysialylation of NCAM:

1.      Polysialic Acid (PSA):

o  Polysialic acid is a linear homopolymer of α-2,8-linked sialic acid residues.

o    PSA is a large, negatively charged carbohydrate polymer that can be attached to glycoproteins, with NCAM being one of the major carriers of polysialic acid in the nervous system.

2.     Function of Polysialylation:

o    Regulation of Cell Adhesion: Polysialylation of NCAM reduces its adhesive properties, leading to decreased cell-cell adhesion and increased cell motility.

o Neuronal Plasticity: Polysialylation of NCAM is involved in modulating neuronal plasticity, axon guidance, and synaptic remodeling during development and in response to environmental cues.

o    Neurite Outgrowth: PSA-NCAM promotes neurite outgrowth by reducing cell adhesion, allowing for increased exploratory behavior of growth cones and facilitating axon pathfinding.

3.     Developmental Role:

o Neural Development: Polysialylation of NCAM is particularly important during neural development, where it regulates processes such as neuronal migration, axon guidance, and synaptogenesis.

o    Plasticity and Learning: The dynamic regulation of polysialylation of NCAM is associated with synaptic plasticity, learning, and memory formation in the brain.

4.    Regulation of Polysialylation:

o    Enzymatic Modification: Polysialylation of NCAM is catalyzed by two polysialyltransferases, ST8SiaII and ST8SiaIV, which add polysialic acid chains to specific sites on NCAM.

o Developmental Regulation: The expression and activity of polysialyltransferases are tightly regulated during development and can be influenced by various extracellular signals and neuronal activity.

5.     Functional Implications:

o  Disease Associations: Dysregulation of polysialylation of NCAM has been implicated in neurodevelopmental disorders, neurodegenerative diseases, and psychiatric conditions.

o  Therapeutic Potential: Modulation of polysialylation of NCAM represents a potential therapeutic target for promoting neural regeneration, enhancing synaptic plasticity, and treating neurological disorders.

In summary, polysialylation of NCAM plays a critical role in regulating cell adhesion, neuronal plasticity, and neural development by modulating the adhesive properties of NCAM and influencing processes such as neurite outgrowth, axon guidance, and synaptic remodeling. The dynamic regulation of polysialylation of NCAM contributes to the functional diversity of NCAM in the nervous system and its involvement in various physiological and pathological conditions.

 

Comments

Popular posts from this blog

Human Connectome Project

The Human Connectome Project (HCP) is a large-scale research initiative that aims to map the structural and functional connectivity of the human brain. Launched in 2009, the HCP utilizes advanced neuroimaging techniques to create detailed maps of the brain's neural pathways and networks in healthy individuals. The project focuses on understanding how different regions of the brain communicate and interact with each other, providing valuable insights into brain function and organization. 1.      Structural Connectivity : The HCP uses diffusion MRI to map the white matter pathways in the brain, revealing the structural connections between different brain regions. This information helps researchers understand the physical wiring of the brain and how information is transmitted between regions. 2.      Functional Connectivity : Functional MRI (fMRI) is employed to study the patterns of brain activity and connectivity while individuals are at rest (...

Clinical Significance of Hypnopompic, Hypnagogic, and Hedonic Hypersynchron

Hypnopompic, hypnagogic, and hedonic hypersynchrony are normal pediatric phenomena with no significant clinical relevance. These types of hypersynchrony are considered variations in brain activity that occur during specific states such as arousal from sleep (hypnopompic), transition from wakefulness to sleep (hypnagogic), or pleasurable activities (hedonic). While these patterns may be observed on an EEG, they are not indicative of any underlying pathology or neurological disorder. Therefore, the presence or absence of hypnopompic, hypnagogic, and hedonic hypersynchrony does not carry any specific clinical implications. It is important to differentiate these normal variations in brain activity from abnormal patterns that may be associated with neurological conditions, such as epileptiform discharges or other pathological findings. Understanding the clinical significance of these normal phenomena helps in accurate EEG interpretation and clinical decision-making.  

Distinguishing Features of Alpha Activity

Alpha activity in EEG recordings has distinguishing features that differentiate it from other brain wave patterns.  1.      Frequency Range : o   Alpha activity typically occurs in the frequency range of 8 to 13 Hz. o   The alpha rhythm is most prominent in the posterior head regions during relaxed wakefulness with eyes closed. 2.    Location : o   Alpha activity is often observed over the occipital regions of the brain, known as the occipital alpha rhythm or posterior dominant rhythm. o   In drowsiness, the alpha rhythm may extend anteriorly to include the frontal region bilaterally. 3.    Modulation : o   The alpha rhythm can attenuate or disappear with drowsiness, concentration, stimulation, or visual fixation. o   Abrupt loss of the alpha rhythm due to visual or cognitive activity is termed blocking. 4.    Behavioral State : o   The presence of alpha activity is associated with a state of relax...

Alpha Activity

Alpha activity in electroencephalography (EEG) refers to a specific frequency range of brain waves typically observed in relaxed and awake individuals. Here is an overview of alpha activity in EEG: 1.      Frequency Range : o Alpha waves are oscillations in the frequency range of approximately 8 to 12 Hz (cycles per second). o They are most prominent in the posterior regions of the brain, particularly in the occipital area. 2.    Characteristics : o Alpha waves are considered to be a sign of a relaxed but awake state, often observed when individuals are awake with their eyes closed. o They are typically monotonous, monomorphic, and symmetric, with a predominant anterior distribution. 3.    Variations : o Alpha activity can vary based on factors such as age, mental state, and neurological conditions. o Variations in alpha frequency, amplitude, and distribution can provide insights into brain function and cognitive processes. 4.    Clinica...

The expression of Notch-related genes in the differentiation of BMSCs into dopaminergic neuron-like cells.

  The expression of Notch-related genes plays a crucial role in the differentiation of human bone marrow mesenchymal stem cells (h-BMSCs) into dopaminergic neuron-like cells. The Notch signaling pathway is involved in regulating cell fate decisions, including the differentiation of BMSCs. In the study discussed in the PDF file, changes in the expression of Notch-related genes were observed during the differentiation process. Specifically, the study utilized a human Notch signaling pathway PCR array to detect the expression levels of 84 genes related to the Notch signaling pathway, including ligands, receptors, target genes, cell proliferation and differentiation-related genes, and neurogenesis-related genes. The array also included genes from other signaling pathways that intersect with the Notch pathway, such as Sonic hedgehog and Wnt receptor signaling pathway members. During the differentiation of h-BMSCs into dopaminergic neuron-like cells, the expression levels of Notch-re...