Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Advanced Strategies for Fate Mapping in Vivo

Fate mapping in vivo is a powerful technique used to track the developmental origins and lineage relationships of cells within complex tissues and organs. Advanced strategies for fate mapping in vivo involve sophisticated genetic tools and imaging technologies that enable precise and dynamic visualization of cell fate decisions and lineage trajectories. Here are some key advanced strategies for fate mapping in vivo:


1.      Genetic Lineage Tracing:

o    Cre-Lox Recombination: Utilizing Cre-Lox recombination systems allows for cell type-specific labeling and tracking of cell lineages based on the expression of Cre recombinase in specific cell populations. This technique enables spatial and temporal control over lineage tracing events.

o    Inducible Systems: Incorporating inducible Cre systems, such as tamoxifen-inducible CreERT2, enables temporal control over lineage tracing experiments, allowing researchers to activate genetic labeling at specific developmental stages or in response to external stimuli.

o    Intersectional Approaches: Intersectional strategies involving the intersection of multiple genetic drivers (e.g., dual recombinase systems) provide increased specificity and combinatorial labeling of distinct cell populations, facilitating more precise fate mapping analyses.

2.     Single-Cell Fate Mapping:

o  Single-Cell Resolution: Advanced fate mapping techniques now enable single-cell resolution tracking of cell lineages, allowing researchers to follow the fate of individual cells over time and assess clonal dynamics within tissues and organs.

oBarcoding Strategies: Barcoding approaches, such as DNA barcoding or RNA sequencing-based barcoding, can be employed to uniquely label individual cells or clones, providing a molecular signature for tracking cell lineages and fate decisions.

3.     Live Imaging and Microscopy:

o    Intravital Imaging: In vivo imaging techniques, such as intravital microscopy and two-photon microscopy, allow for real-time visualization of cell behaviors, lineage relationships, and tissue dynamics within live organisms, providing insights into developmental processes and cellular interactions.

o    Longitudinal Tracking: Longitudinal imaging approaches enable continuous monitoring of cell fate decisions and lineage progression over extended periods, offering dynamic insights into cell behavior, migration patterns, and fate transitions in vivo.

4.    Computational Modeling and Analysis:

o    Quantitative Analysis: Computational modeling and quantitative analysis of fate mapping data can provide insights into lineage relationships, cell fate determinants, and regulatory networks governing cell differentiation and tissue development.

oSingle-Cell Transcriptomics: Integration of single-cell transcriptomic data with fate mapping information allows for the identification of molecular signatures associated with specific cell fates, lineage trajectories, and developmental transitions, enhancing our understanding of cellular heterogeneity and fate decisions in vivo.

In summary, advanced strategies for fate mapping in vivo leverage cutting-edge genetic tools, imaging technologies, single-cell analyses, and computational modeling to unravel the complexities of cell fate determination, lineage dynamics, and tissue development in living organisms. These sophisticated approaches provide unprecedented insights into the spatiotemporal regulation of cell fate decisions, lineage relationships, and developmental processes, advancing our knowledge of tissue morphogenesis, regeneration, and disease pathogenesis.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Uncertainty Estimates from Classifiers

1. Overview of Uncertainty Estimates Many classifiers do more than just output a predicted class label; they also provide a measure of confidence or uncertainty in their predictions. These uncertainty estimates help understand how sure the model is about its decision , which is crucial in real-world applications where different types of errors have different consequences (e.g., medical diagnosis). 2. Why Uncertainty Matters Predictions are often thresholded to produce class labels, but this process discards the underlying probability or decision value. Knowing how confident a classifier is can: Improve decision-making by allowing deferral in uncertain cases. Aid in calibrating models. Help in evaluating the risk associated with predictions. Example: In medical testing, a false negative (missing a disease) can be worse than a false positive (extra test). 3. Methods to Obtain Uncertainty from Classifiers 3.1 ...

Ensembles of Decision Trees

1. What are Ensembles? Ensemble methods combine multiple machine learning models to create more powerful and robust models. By aggregating the predictions of many models, ensembles typically achieve better generalization performance than any single model. In the context of decision trees, ensembles combine multiple trees to overcome limitations of single trees such as overfitting and instability. 2. Why Ensemble Decision Trees? Single decision trees: Are easy to interpret but tend to overfit training data, leading to poor generalization,. Can be unstable because small variations in data can change the structure of the tree significantly. Ensemble methods exploit the idea that many weak learners (trees that individually overfit or only capture partial patterns) can be combined to form a strong learner by reducing variance and sometimes bias. 3. Two Main Types of Tree Ensembles (a) Random Forests Random forests are ensembles con...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...