Skip to main content

Purposive Sampling

Purposive sampling, also known as judgmental or selective sampling, is a non-probability sampling technique where sample units are selected based on specific criteria determined by the researcher's judgment and purpose of the study. This method involves the deliberate selection of sample units that possess certain characteristics of interest. Here are some key points about purposive sampling:


1.    Definition:

o    Purposive sampling is a sampling method where researchers select sample units based on specific criteria or characteristics relevant to the research objectives.

o    Sample units are chosen intentionally to represent certain traits, experiences, or variations within the population.

2.    Characteristics:

o    Purposive sampling is a non-random sampling technique that relies on the researcher's expertise, judgment, and knowledge of the population.

o    Researchers use their discretion to select sample units that are most likely to provide valuable insights or represent the diversity of the population.

3.    Types of Purposive Sampling:

o Maximum Variation Sampling: Selecting sample units that represent a wide range of characteristics or experiences within the population.

o Homogeneous Sampling: Choosing sample units that share common characteristics or traits to study a specific subgroup.

o    Expert Sampling: Selecting sample units based on the expertise or knowledge they possess related to the research topic.

o Typical Case Sampling: Choosing sample units that are considered typical or representative of the population.

4.    Advantages:

o  Purposive sampling allows researchers to focus on specific characteristics or subgroups of interest, making it suitable for targeted research objectives.

o    This method is valuable for studying rare populations, exploring specific phenomena, or gaining in-depth insights into particular traits.

5.    Limitations:

o    Results obtained from purposive samples may not be generalizable to the entire population due to selection bias and non-random selection.

o The subjective nature of purposive sampling can introduce researcher bias and limit the external validity of the findings.

6.    Applications:

o    Purposive sampling is commonly used in qualitative research, case studies, ethnographic studies, and situations where specific characteristics or experiences are of interest.

o This method is particularly useful when studying unique populations, exploring diverse perspectives, or conducting in-depth investigations.

7.    Considerations:

o    Researchers should clearly define the criteria for selecting sample units in purposive sampling and justify their choices based on the research objectives.

o    While purposive sampling offers flexibility and targeted sampling, researchers should acknowledge its limitations in terms of generalizability and potential bias.

Purposive sampling is a valuable sampling technique that allows researchers to strategically select sample units based on specific criteria relevant to their research goals. While this method offers advantages in terms of targeted sampling and in-depth exploration, researchers should be mindful of its limitations in terms of representativeness and potential bias. Careful consideration of the research objectives and criteria for sample selection is essential when employing purposive sampling in a study.

 

Comments

Popular posts from this blog

Distinguished Features of Cardiac Artifacts

The distinguished features of cardiac artifacts in EEG recordings include characteristics specific to different types of cardiac artifacts, such as ECG artifacts, pacemaker artifacts, and pulse artifacts.  1.      ECG Artifacts : o    Waveform : ECG artifacts typically appear as poorly formed QRS complexes, with the P wave and T wave usually not evident. The QRS complex may be diphasic or monophasic. o     Location : ECG artifacts are often better formed and larger on the left side when using bipolar montages, with clearer QRS waveforms over the temporal regions. o    Regular Intervals : ECG artifacts may exhibit periodic occurrences with intervals that are multiples of a similar time interval, aiding in their identification. o   Conservation of Waveform : ECG artifacts show conservation of waveform and temporal association with the QRS complex in an ECG channel, helping differentiate them from other patterns. 2.  ...

Normal Amplitude

In the context of transcranial magnetic stimulation (TMS) research, "Normal Amplitude" refers to a specific parameter used in experimental protocols involving motor tasks and measuring motor evoked potentials (MEPs). Here is an explanation of Normal Amplitude in the context of TMS studies: 1.       Definition : o   Normal Amplitude typically refers to a standard or baseline level of movement or muscle activation used as a reference point in TMS experiments. o   In TMS studies focusing on motor tasks and MEP measurements, Normal Amplitude may represent the expected or typical level of muscle contraction or movement amplitude during a specific task. 2.      Experimental Design : o    Normal Amplitude is often used as a control condition or reference point against which other amplitudes or variations in movement are compared. o   Researchers may establish Normal Amplitude based on pre-defined criteria, individual subject...

Frontal Arousal Rhythm

Frontal arousal rhythm is an EEG pattern characterized by frontal predominant alpha activity that occurs in response to arousal or activation.  1.      Definition : o Frontal arousal rhythm is a specific EEG pattern characterized by alpha activity predominantly in the frontal regions of the brain. o   It is typically observed in response to arousal, attention, or cognitive engagement and may reflect a state of increased alertness or readiness. 2.    Characteristics : o Frontal arousal rhythm is characterized by alpha frequency activity (typically between 7-10 Hz) with an amplitude ranging from 10 to 50 μV. o   This pattern is often transient, lasting up to 20 seconds, and may occur in response to external stimuli, cognitive tasks, or changes in the environment. 3.    Clinical Significance : o   Frontal arousal rhythm is considered a normal EEG pattern associated with states of arousal, attention, or cognitive processing. o ...

Principle Properties of Research

The principle properties of research encompass key characteristics and fundamental aspects that define the nature, scope, and conduct of research activities. These properties serve as foundational principles that guide researchers in designing, conducting, and interpreting research studies. Here are some principle properties of research: 1.      Systematic Approach: Research is characterized by a systematic and organized approach to inquiry, involving structured steps, procedures, and methodologies. A systematic approach ensures that research activities are conducted in a logical and methodical manner, leading to reliable and valid results. 2.      Rigorous Methodology: Research is based on rigorous methodologies and techniques that adhere to established standards of scientific inquiry. Researchers employ systematic methods for data collection, analysis, and interpretation to ensure the validity and reliability of research findings. 3. ...

Review Settings of EEG

The review settings of an EEG recording refer to the parameters that can be adjusted to optimize the visualization and interpretation of electrical brain activity. Here is an overview of the key review settings in EEG analysis: 1.       Amplification (Gain/Sensitivity) : o Definition : Amplification, also known as gain or sensitivity, determines how much the electrical signals from the brain are amplified before being displayed on the EEG recording. o Measurement : Typically measured in microvolts per millimeter (μV/mm). o Impact : Adjusting the amplification setting can affect the visibility of high-amplitude and low-amplitude activity. High-amplitude activity may require vertical compression to fit within the display range, while low-amplitude activity may require lower sensitivity settings for better visualization. 2.      Frequency Filtering : o Bandpass : The frequency range within which EEG signals are analyzed. Common settings include ...