Skip to main content

Glutamate. From its isolation to neurotransmitter function

The journey of glutamate from its isolation to its recognition as a key neurotransmitter in the brain is a fascinating story that spans several decades of scientific discovery. Here is an overview of the milestones in the history of glutamate, highlighting its isolation and eventual identification as a major neurotransmitter:


1.      Isolation of Glutamate:

o    Glutamate, an amino acid, was first isolated in 1866 by the German chemist Karl Heinrich Ritthausen from wheat gluten.

o    In the early 20th century, researchers identified glutamate as a component of protein-rich foods and a building block of proteins in the body.

2.     Identification as a Neurotransmitter:

o    In the 1950s and 1960s, researchers began to investigate the role of glutamate in the central nervous system.

o    In 1957, Daniel McGeer and John McGeer discovered that glutamate is present in high concentrations in the brain and spinal cord.

o    In the 1960s, researchers such as John Curtis Watkins and Edward Roberts demonstrated that glutamate acts as an excitatory neurotransmitter in the brain.

o    In the 1970s, the concept of glutamate as a major neurotransmitter in the brain gained widespread acceptance, particularly in the field of neuroscience.

3.     Glutamate Receptors:

o    In the 1980s and 1990s, researchers identified and characterized several types of glutamate receptors in the brain, including NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), and kainate receptors.

o    These receptors play crucial roles in synaptic transmission, plasticity, and neuronal communication.

4.    Excitatory Neurotransmission:

oGlutamate is now recognized as the primary excitatory neurotransmitter in the central nervous system, responsible for fast synaptic transmission and neuronal signaling.

o    It plays a key role in processes such as learning, memory, and motor function.

5.     Neurological Implications:

o    Dysregulation of glutamate signaling has been implicated in various neurological disorders, including epilepsy, stroke, Alzheimer's disease, and Parkinson's disease.

o    Research continues to explore the role of glutamate in brain function and its potential as a target for therapeutic interventions in neurological and psychiatric conditions.

Overall, the journey of glutamate from its isolation as an amino acid to its recognition as a major neurotransmitter in the brain represents a significant advancement in our understanding of brain function and neurological disorders.

 

Comments

Popular posts from this blog

Different Methods for recoding the Brain Signals of the Brain?

The various methods for recording brain signals in detail, focusing on both non-invasive and invasive techniques.  1. Electroencephalography (EEG) Type : Non-invasive Description : EEG involves placing electrodes on the scalp to capture electrical activity generated by neurons. It records voltage fluctuations resulting from ionic current flows within the neurons of the brain. This method provides high temporal resolution (millisecond scale), allowing for the monitoring of rapid changes in brain activity. Advantages : Relatively low cost and easy to set up. Portable, making it suitable for various applications, including clinical and research settings. Disadvantages : Lacks spatial resolution; it cannot precisely locate where the brain activity originates, often leading to ambiguous results. Signals may be contaminated by artifacts like muscle activity and electrical noise. Developments : ...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

What are the direct connection and indirect connection performance of BCI systems over 50 years?

The performance of Brain-Computer Interface (BCI) systems has significantly evolved over the past 50 years, distinguishing between direct and indirect connection methods. Direct Connection Performance: 1.       Definition : Direct connection BCIs involve the real-time measurement of electrical activity directly from the brain, typically using techniques such as: Electroencephalography (EEG) : Non-invasive, measuring electrical activity through electrodes on the scalp. Invasive Techniques : Such as implanted electrodes, which provide higher signal fidelity and resolution. 2.      Historical Development : Early Research : The journey began in the 1970s with initial experiments at UCLA aimed at establishing direct communication pathways between the brain and devices. Research in this period focused primarily on animal subjects and theoretical frameworks. Technological Advancements : As technology advan...

How does the 0D closed-loop model of the whole cardiovascular system contribute to the overall accuracy of the simulation?

  The 0D closed-loop model of the whole cardiovascular system plays a crucial role in enhancing the overall accuracy of simulations in the context of biventricular electromechanics. Here are some key ways in which the 0D closed-loop model contributes to the accuracy of the simulation:   1. Comprehensive Representation: The 0D closed-loop model provides a comprehensive representation of the entire cardiovascular system, including systemic circulation, arterial and venous compartments, and interactions between the heart and the vasculature. By capturing the dynamics of blood flow, pressure-volume relationships, and vascular resistances, the model offers a holistic view of circulatory physiology.   2. Integration of Hemodynamics: By integrating hemodynamic considerations into the simulation, the 0D closed-loop model allows for a more realistic representation of the interactions between cardiac mechanics and circulatory dynamics. This integration enables the simulation ...

LPFC Functions

The lateral prefrontal cortex (LPFC) plays a crucial role in various cognitive functions, particularly those related to executive control, working memory, decision-making, and goal-directed behavior. Here are key functions associated with the lateral prefrontal cortex: 1.      Executive Functions : o     The LPFC is central to executive functions, which encompass higher-order cognitive processes involved in goal setting, planning, problem-solving, cognitive flexibility, and inhibitory control. o     It is responsible for coordinating and regulating other brain regions to support complex cognitive tasks, such as task switching, attentional control, and response inhibition, essential for adaptive behavior in changing environments. 2.      Working Memory : o     The LPFC is critical for working memory processes, which involve the temporary storage and manipulation of information to guide behavior and decis...