Skip to main content

Unveiling Hidden Neural Codes: SIMPL – A Scalable and Fast Approach for Optimizing Latent Variables and Tuning Curves in Neural Population Data

This research paper presents SIMPL (Scalable Iterative Maximization of Population-coded Latents), a novel, computationally efficient algorithm designed to refine the estimation of latent variables and tuning curves from neural population activity. Latent variables in neural data represent essential low-dimensional quantities encoding behavioral or cognitive states, which neuroscientists seek to identify to understand brain computations better. Background and Motivation Traditional approaches commonly assume the observed behavioral variable as the latent neural code. However, this assumption can lead to inaccuracies because neural activity sometimes encodes internal cognitive states differing subtly from observable behavior (e.g., anticipation, mental simulation). Existing latent variable models face challenges such as high computational cost, poor scalability to large datasets, limited expressiveness of tuning models, or difficulties interpreting complex neural network-based functio...

Dynamics Interactions Underpinning Secretory Vesicle Fusion

The dynamics of interactions underpinning secretory vesicle fusion are crucial for neurotransmitter release and synaptic communication. Here is an overview of the key molecular interactions involved in the process of secretory vesicle fusion at the synapse:


1.      SNARE Complex Formation:

o SNARE Proteins: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, including syntaxin, synaptobrevin (VAMP), and SNAP-25, play a central role in mediating membrane fusion.

o    Complex Formation: SNARE proteins from the vesicle membrane (v-SNAREs) and the target membrane (t-SNAREs) form a stable SNARE complex, bringing the vesicle close to the plasma membrane for fusion.

2.     Synaptotagmin Interaction with Calcium:

o    Calcium Sensor: Synaptotagmin, a calcium-binding protein located on the vesicle membrane, senses the increase in intracellular calcium levels upon neuronal depolarization.

o Calcium Binding: Calcium binding to synaptotagmin triggers conformational changes that promote the interaction between the vesicle and the plasma membrane, facilitating membrane fusion.

3.     Complexin Regulation:

o  Complexin Binding: Complexin is a protein that binds to the SNARE complex and regulates the timing of membrane fusion by preventing premature fusion and ensuring synchronized release of neurotransmitters.

o    Fusion Promotion: Complexin interacts with the SNARE complex to facilitate the final steps of membrane fusion, leading to the release of neurotransmitters into the synaptic cleft.

4.    Munc18-1 and Munc13 Interaction:

o    Munc18-1: Munc18-1 is a protein that interacts with syntaxin and regulates SNARE complex assembly and vesicle fusion.

o Munc13: Munc13 is involved in priming vesicles for fusion by promoting the transition of vesicles to a fusion-ready state through interactions with SNARE proteins and other regulatory factors.

5.     Rab Proteins and Membrane Trafficking:

o    Rab GTPases: Rab proteins regulate vesicle trafficking, docking, and fusion by coordinating membrane dynamics and vesicle transport to specific subcellular locations.

o Membrane Fusion Regulation: Rab GTPases interact with tethering factors, SNARE proteins, and other regulatory molecules to orchestrate the fusion of secretory vesicles with the target membrane.

Understanding the intricate molecular interactions underlying secretory vesicle fusion is essential for elucidating the mechanisms of neurotransmitter release at synapses and synaptic communication. Dysregulation of these interactions can lead to synaptic dysfunction and neurological disorders characterized by impaired neurotransmission. Studying the dynamics of these interactions provides valuable insights into the fundamental processes governing synaptic function and offers potential targets for therapeutic interventions aimed at restoring proper synaptic vesicle fusion and neurotransmitter release in the brain.

 

Comments

Popular posts from this blog

Relation of Model Complexity to Dataset Size

Core Concept The relationship between model complexity and dataset size is fundamental in supervised learning, affecting how well a model can learn and generalize. Model complexity refers to the capacity or flexibility of the model to fit a wide variety of functions. Dataset size refers to the number and diversity of training samples available for learning. Key Points 1. Larger Datasets Allow for More Complex Models When your dataset contains more varied data points , you can afford to use more complex models without overfitting. More data points mean more information and variety, enabling the model to learn detailed patterns without fitting noise. Quote from the book: "Relation of Model Complexity to Dataset Size. It’s important to note that model complexity is intimately tied to the variation of inputs contained in your training dataset: the larger variety of data points your dataset contains, the more complex a model you can use without overfitting....

Linear Models

1. What are Linear Models? Linear models are a class of models that make predictions using a linear function of the input features. The prediction is computed as a weighted sum of the input features plus a bias term. They have been extensively studied over more than a century and remain widely used due to their simplicity, interpretability, and effectiveness in many scenarios. 2. Mathematical Formulation For regression , the general form of a linear model's prediction is: y^ ​ = w0 ​ x0 ​ + w1 ​ x1 ​ + … + wp ​ xp ​ + b where; y^ ​ is the predicted output, xi ​ is the i-th input feature, wi ​ is the learned weight coefficient for feature xi ​ , b is the intercept (bias term), p is the number of features. In vector form: y^ ​ = wTx + b where w = ( w0 ​ , w1 ​ , ... , wp ​ ) and x = ( x0 ​ , x1 ​ , ... , xp ​ ) . 3. Interpretation and Intuition The prediction is a linear combination of features — each feature contributes prop...

Predicting Probabilities

1. What is Predicting Probabilities? The predict_proba method estimates the probability that a given input belongs to each class. It returns values in the range [0, 1] , representing the model's confidence as probabilities. The sum of predicted probabilities across all classes for a sample is always 1 (i.e., they form a valid probability distribution). 2. Output Shape of predict_proba For binary classification , the shape of the output is (n_samples, 2) : Column 0: Probability of the sample belonging to the negative class. Column 1: Probability of the sample belonging to the positive class. For multiclass classification , the shape is (n_samples, n_classes) , with each column corresponding to the probability of the sample belonging to that class. 3. Interpretation of predict_proba Output The probability reflects how confidently the model believes a data point belongs to each class. For example, in ...

Uncertainty in Multiclass Classification

1. What is Uncertainty in Classification? Uncertainty refers to the model’s confidence or doubt in its predictions. Quantifying uncertainty is important to understand how reliable each prediction is. In multiclass classification , uncertainty estimates provide probabilities over multiple classes, reflecting how sure the model is about each possible class. 2. Methods to Estimate Uncertainty in Multiclass Classification Most multiclass classifiers provide methods such as: predict_proba: Returns a probability distribution across all classes. decision_function: Returns scores or margins for each class (sometimes called raw or uncalibrated confidence scores). The probability distribution from predict_proba captures the uncertainty by assigning a probability to each class. 3. Shape and Interpretation of predict_proba in Multiclass Output shape: (n_samples, n_classes) Each row corresponds to the probabilities of ...

Supervised Learning

What is Supervised Learning? ·     Definition: Supervised learning involves training a model on a labeled dataset, where the input data (features) are paired with the correct output (labels). The model learns to map inputs to outputs and can predict labels for unseen input data. ·     Goal: To learn a function that generalizes well from training data to accurately predict labels for new data. ·          Types: ·          Classification: Predicting categorical labels (e.g., classifying iris flowers into species). ·          Regression: Predicting continuous values (e.g., predicting house prices). Key Concepts: ·     Generalization: The ability of a model to perform well on previously unseen data, not just the training data. ·         Overfitting and Underfitting: ·    ...